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Abstract  

Small interfering RNA (siRNA) shows great promise in cancer therapy but its 

effectiveness in vivo still remains a crucial issue for its transition into the clinics.  

While the successful use of PEGylated lipidic delivery systems have already been 

reported, most of the formulation procedures employed are labour intensive and also 

result in unstable end products.  We have previously developed a simple yet efficient 

Hydration-of-Freeze-Dried-Matrix (HFDM) method to entrap siRNA within lipid 

particles where the products exhibited superior stability.  Here, we show that these 

HFDM-formulated particles are stable in the presence of serum and can deliver 

siRNA efficiently to tumours following intravenous administration.  Using these 

particles, around 50% knockdown of the target gene expression was observed in 

tumours.  With the use of siRNA targeting the E6/7 oncogenes expressed in cervical 

cancer, we showed a 50% reduction in tumour size.  This level of tumour growth 

suppression was comparable to that achieved from cisplatin at the clinically used dose.  

Overall, our results demonstrate the feasibility of using HFDM-formulated particles to 

systematically administer E6/7-targeted siRNA for cervical cancer treatment.  The 

simplicity of preparation procedure along with superior product stability obtained 

from our method offers an innovative approach for the in vivo delivery of siRNA. 
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Introduction 

Cancer formation is the result of the accumulation of numerous genetic and epigenetic 

changes giving rise to cells with enhanced growth and survival characteristics. 

Typically these changes result in the over-expression of oncogenes, making the 

selective targeting of these genes an attractive means to treat cancer. This can be 

achieved by using small interfering RNA (siRNA), 21-27 base-pair (bp), 

double-stranded RNAs, that once introduced into the cytoplasm of cells are highly 

efficient at gene knockdown at very low concentrations 1.  To date, numerous siRNA 

targets have been identified in cancer (reviewed in 2) and the down-regulation of these 

genes in vitro using cationic lipidic vectors often results in reduced cancer cell 

proliferation 1,3. 

 

Despite the success in vitro, the in vivo delivery of siRNA has been the major obstacle 

to its progression into the clinic.  Much effort has therefore been devoted to the 

development of suitable in vivo siRNA delivery systems for systemic use.  Of these, 

the PEGylated lipidic systems show promise, with early reports demonstrating their 

effectiveness in various cancer models 4-6.  The formulation procedures employed in 

those studies, however, are labour-intensive and require specialised equipments and 

skills.  The resulting end products, being in aqueous states, are also not suitable for 
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long-term storage.  Prompted by these limitations, we recently reported on the 

development of a simple, yet efficient, Hydration-of-Freeze-Dried-Matrix (HFDM) 

method to formulate a vector that can protect siRNA from nuclease degradation and 

can accumulate in tumours after intravenous (i.v.) administration 7.  In addition to 

the simplicity of the preparation procedure, we also showed that these freeze-dried, 

lipid-based, formulations are highly stable even after storage at room temperatures for 

one month.   

 

Here we aim to further characterise these HFDM-formulated siRNA-loaded lipid 

particles and investigate their biological activities in cervical cancer mouse models.  

The recently developed prophylactic vaccines, though effective, will not decrease the 

number of new cervical cancer cases for another 15-20 years 8.  Therefore, there is 

still an urgent unmet clinical need for new treatments owing to the side effects and 

low response rate of current treatment strategies 9.  Moreover, the unique nature of 

the disease makes this an ideal model system for testing siRNA-based cancer 

therapies, as almost 100% of cases are caused by Human Papilloma Virus (HPV) 

infection, thereby permitting exclusive targeting of cancer cell while leaving normal 

healthy tissue alone.   This is due to the presence of two essential viral oncogenes, 

E6 and E7, in cervical cancer cells.  These oncogenes disrupt p53 and pRB tumour 
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suppression pathways in cells, and we and others have shown that targeting E6 and E7 

by siRNA in vitro results in either cell senescence 1,10,11 or apoptosis 12,13.  To date, 

the in vivo application has been limited to intratumoural injections with significant 

inhibition of tumour growth reported after single or multiple administrations 14-18.  

Though these findings demonstrated the feasibility of using E6/7-targeted siRNA for 

cervical cancer treatment, the delivery strategies employed in these studies have 

limited clinical application.  We therefore aim to develop a suitable siRNA delivery 

system for the systemic administration of E6/7-targeted siRNA.   

 

In this report, we first characterised the HFDM-formulated siRNA-loaded lipid 

particles in terms of stability and circulatory half-life.  Importantly, we found that 

our designed particles are able to effectively deliver siRNA to tumours following 

intravenous administration, resulting in sequence-specific target gene knockdown.  

Using these particles, we subsequently investigated the effect of E6/7-targted siRNA 

in cervical cancer mouse models.  The combinational use of siRNA and cisplatin 

was also examined both in vitro and in vivo.  Overall, our results demonstrated the 

feasibility of using these HFDM-formulated carriers to systematically administer 

E6/7-targeted siRNA for the treatment of cervical cancer. 
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Results 

E6/7 siRNA can efficiently reduce cell growth in E6/7-expressing 

TC-1 cells 

As the use of siRNA to reduce E6/7 gene expression in TC-1 cells has not been 

previously demonstrated, we first examined the effect of E6/7 knockdown in TC-1 

cells using cationic DOTAP/DOPE liposomes.  TC-1 cells were used in this 

experiment as they are murine HPV16 E6/7-expressing cells, which allowed us to 

perform our subsequent animal experiments in immune-competent mice.  Similar to 

our previously published data for HPV 16 CaSki cells 1, E6/7 siRNA treatment 

resulted in significant knockdown of E6/7 mRNA in TC-1 cells, as measured by 

quantitative PCR (Figure 1 A).  As shown in Figure 1 B, treatment with E6/7 

siRNA, but not control siRNA, resulted in a significant decrease in cell viability 

(p<0.05).  This is expected as continuous expression of E6/7 is required for the 

survival of TC-1 cells. 

 

E6/7 siRNA-loaded liposomes prolonged survival of mice bearing 

lung metastasis tumours 

To assess the ability of E6/7 siRNA to inhibit TC-1 tumour growth in vivo, we 

administered cationic liposome-bound E6/7 siRNA intravenously to mice bearing 
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cervical cancer lung metastasis 19.  We chose to use cationic liposomes to deliver 

siRNA in this experiment as they have previously been shown to accumulate 

efficiently in lung tissues following intravenous administration 20.  In this experiment, 

mice were treated with lipoplexes containing 24µg (1.2 mg/kg) of E6/7 siRNA on 

days 1, 4 and 7 following tumour cell inoculation.  We observed that the mice 

receiving the E6/7 siRNA treatment had a delayed onset of illness compared to those 

treated with vehicle only or with control siRNA (Figure 2 A).  However, there was 

no survival advantage for E6/7 siRNA-treated mice compared to mice in the control 

groups.  In contrast, when the treatment dosage was increased to 80µg (4 mg/kg) 

siRNA per mouse, E6/7 siRNA-treated mice had a significantly prolonged survival 

(p<0.005), with a median survival of 31 days compared to 19, 23.5, or 21 days for 

vehicle only, control siRNA or empty liposomes treated groups, respectively (Figure 

2 B).  It must be noted, however, that while this demonstrated the feasibility of using 

E6/7 siRNA to treat cervical cancer metastasis, the application of this non-PEGylated 

liposomal delivery system likely limits to the first-pass organs and is not useful for 

solid tumours on other locations.  We therefore subsequently evaluated the 

feasibility of delivering siRNA to solid cervical cancer tumours using our previously 

reported HFDM-formulated PEGylated lipidic system 7. 
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Serum stability and pharamacokinetic (PK) profiles of 

HFDM-formulated nucleic acid-loaded lipid particles 

We have previously established the ability of HFDM-formulated lipid particles to 

accumulate in subcutaneous tumours following systemic administration 7.  Here we 

aimed to characterise these particles further via assessing their serum stability as well 

as their pharmacokinetic profile.  As shown in Figure 3 A, in contrast to the 

non-PEGylated lipoplexes where large aggregates (>3µm) formed immediately after 

the addition of serum, the size of the HFDM-formulated particles remained constant, 

even after prolonged incubation with serum at 37°C (Figure 3 B).  At the end of 24 

hours, the average size of HFDM-formulated particles was less than 200nm, clearly 

demonstrating the suitability of these particles for systemic applications. 

 

To investigate the pharmacokinetic profile of these HFDM-formulated particles, we 

monitored serum concentrations of entrapped FITC-labelled oligonucleotides 

following i.v. administration over time.  A rapid distribution phase was observed 

with the serum concentration dropping to 10% of the initial value within 2 hours, 

indicating the efficient delivery of these oligonucleotides to various tissues (Figure 4 

A).  The concentration remained steady after 4 hours and the elimination half-life of 

our particles was 44 hours.  At 24 hours, around 1.9% of the particles were still 

circulating in the bloodstream.  The non-compartmental analysis showed an Area 
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Under Curve (AUC)0-infinity of 11.5 hr.ng/µL, Clearance (CL) of 3.4 mL/hr, Steady 

State Volume of Distribution (Vss) of 219.3 mL and Mean Residence Time (MRT) of 

52 hrs. 

  

In vivo gene knockdown efficiency and liver toxicity profile of 

HFDM-formulated lipid particles 

We next examined the tumour delivery efficiency of our siRNA-loaded 

HFDM-formulated lipid particles by assessing the level of target gene knockdown in 

tumours following i.v. administration.  GFP, instead of E6/7, was chosen as the 

target gene as its expression level does not interfere with tumour cell survival, thereby 

allowing a more accurate determination of the knockdown efficiency of our delivery 

system.  As shown in Figure 4 B, GFP messenger RNA (mRNA) level was reduced 

by almost 50% in GFP-expressing tumours when mice were treated with two doses of 

particles loaded with 40µg of siRNA directed against GFP.  This knockdown was 

sequence-specific as the lipid particles loaded with control siRNA did not result in a 

reduction in GFP mRNA. 

 

While this demonstrated the potential use of these particles in cancer therapy, one 

must also consider their safety profiles in vivo.  As a significant amount of these 
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particles accumulated in the liver following i.v. administration 7, we performed an 

Alanine Transaminase (ALT) enzyme test to detect any obvious adverse effect of 

these particles in the liver.  The result showed that the administration of either 20µg 

or 40µg of siRNA-entrapped HFDM-formulated lipid particles gave no elevation of 

ALT enzyme activity at 24 hours compared to vehicle-treated mice (Figure 4 C). 

 

HFDM-formulated E6/7 siRNA-loaded lipid particles are 

comparable to cisplatin for tumour reduction 

Having established that our siRNA-loaded PEGylated lipid particles can accumulate 

in subcutaneous tumours after i.v. administration and result in sequence-specific gene 

silencing, we next examined the effect of E6/7-targeted siRNA on tumour burden.  

We observed a 50% reduction of tumour growth rate for mice which have been 

treated with three doses of HFDM-formulated E6/7 siRNA-loaded lipid particles 

compared to control groups (p < 0.01) (Figure 5 A).  This effect was not observed 

using the control siRNA, demonstrating the specificity of our siRNA.  Importantly, 

this anti-tumour effect of E6/7 siRNA was found to be highly dependent on the use of 

our delivery system as naked E6/7 siRNA did not result in any reduction in tumour 

growth rate (Figure 5 B).  Isotonic sucrose solution, used as the vehicle in our 

formulation, also did not have any effect on tumour growth compared to mock saline 
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treatment (Figure 5 B).  Overall, these results demonstrated the crucial role of our 

formulation in the successful systemic delivery of siRNA to tumours.  

 

In order to compare the anti-tumour effect mediated by E6/7 siRNA with that of a 

standard chemotherapy drug commonly used in cervical cancer treatment, we treated 

mice bearing solid tumours with cisplatin.  As shown in Figure 5 C, both cisplatin 

and E6/7 siRNA resulted in around 50% reduction in tumour size on day 14 after 2-3 

treatments.  This result was promising as the cisplatin dose used in the experiment 

(50mg/m2, assuming body surface area of 36 cm2/mouse) is comparable to current 

clinical dosing. 

 

 

Combination treatment of E6/7 siRNA and cisplatin in vitro and in 

vivo 

As monotherapy is often inadequate in cancer treatment, we investigated the potential 

combined use of E6/7 siRNA-entrapped lipid particles and cisplatin in cervical cancer 

treatment.  We hypothesised that the combined treatment will have an additive effect 

in reducing tumour cell growth thus producing a more beneficial outcome.  To test 

our hypothesis, we first examined the effect of this combined treatment in vitro with 

cells receiving E6/7 siRNA treatment first followed by cisplatin (Figure 6 A).  
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Consistent with our finding in Figure 1 B, treatment of cells with E6/7 siRNA resulted 

in around 50% reduction in cell viability.  As expected, cell viability decreases with 

the increasing dose of cisplatin, with an IC50 around 1.5 µM.  There was, however, 

no obvious added benefit to combined cisplatin/siRNA treatment with similar doses 

of cisplatin required to produce more than 60% reduction in cell viability.  As a few 

research groups have previously reported that either high E6/7 or low p53 status could 

render cells more sensitive to cisplatin treatment 21,22, we wondered if treating cells 

with cisplatin first (to induce DNA damage), followed by E6/7 siRNA (to release 

p53), would produce a better outcome.  However, this reversed treatment order 

resulted in no improvement in terms of overall reduction in cell viability as shown in 

Figure 6 B. 

 

These in vitro data suggested that treating E6/7-expressing cells with both E6/7 

siRNA and cisplatin may not have a greater therapeutic benefit than either treatment 

alone.  We subsequently confirmed this finding in vivo where we treated the mice 

with three doses of E6/7 siRNA and two doses of cisplatin.  We found that mice 

which received both treatments had similar levels of tumour growth inhibition 

compared to mice which received E6/7 siRNA treatment alone (Figure 6 C).  This 

suggested that while the anti-tumour effect of E6/7 siRNA in vivo is comparable to 
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that of cisplatin (Figure 5 C), there may be limited clinical value in this combined 

therapy. 
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Discussion 

SiRNAs have enormous potential in cancer treatment but the development of an 

appropriate delivery system remains a crucial issue for their transition into the clinic.  

Owing to the complexity of currently available formulation procedures along with the 

product instability, we have developed a novel yet simple HFDM method to formulate 

siRNA-loaded particles where the end-products showed superior stability compared to 

the traditional formulations7.  Results presented here clearly showed that the 

HFDM-formulated PEGylated lipidic particles can deliver siRNA to tumours 

efficiently after systemic administration and subsequently lead to sequence-specific 

anti-tumour effects in a cervical cancer mouse model.  To our knowledge, this is the 

first paper which describes the systemic use of E6/7-targeted siRNA for treatment of 

cervical cancer. 

 

As a proof-of-concept experiment, we first examined the effect of E6/7-targeted 

siRNA using cationic liposomes in a lung metastasis cervical cancer mouse model.  

Unlike the effect observed at low dosage (1.2 mg/kg/dose) (Figure 2 A), treatment of 

mice with 80µg of E6/7 siRNA (4mg/kg) for 4 doses resulted in an average of 50% 

increase in their median survival compared to mice in the control groups (Figure 2 B).  

While this is encouraging, it must be noted that the application site of this cationic 
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delivery system would be restricted to first pass organs, such as lungs or liver 23-26.  

Its application for treatment of tumours located elsewhere in the body would thus be 

limited unless extremely high doses were used, as is the case for the studies 

performed using cationic cardiolipin-based liposomes in subcutaneous breast or 

prostate cancer mouse models (15 mg/kg/day for 5 days) 27,28.  This, along with the 

possibility of embolism occurring after administration, would be likely to limit their 

clinical applications. 

 

In contrast to these non-PEGylated lipid particles, our HFDM-formulated PEGylated 

particles exhibit much more favourable characteristics for systemic application 

(Figure 3).  The circulatory half life of these HFDM-formulated particles (T1/2 �z > 

40 Hrs, Figure 4 A) was also found to be much longer than other formulations such as 

galactosylated cationic liposomes (T1/2 �z < 1 Hr) 23 or PEGylated polyplexes (T1/2 �z 

= 1.5 Hrs) 29.  Using these HFDM-formulated particles, we demonstrated a 50% 

knockdown of the GFP target gene in tumours following systemic administration.  

This level of knockdown is comparable to many other studies using similar dosage 

5,30,31, although some have reported higher gene-silencing efficiency 4,32.  However, it 

must be noted that the autograft TC-1 tumours employed in our study, as opposed to 

the xenograft tumour models used in many other studies31-34, would result in an 
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underestimation of gene knockdown efficiency.  This is due to the fact that the 

�-actin normalising gene used in our assays would measure expression in all murine 

cells in the tumour and some of these would be host-derived, support cells that that do 

not express GFP. 

 

For siRNA to be used successfully as a cancer therapeutic agent, a fine balance 

between long-circulatory characteristic and the gene-silencing efficiency of the 

delivery particle is required.  The importance of this was demonstrated in a recently 

published study on neutral lipid-coated wrapsome formulation6.  While their 

particles exhibited excellent PK profile, with 20% of the particles still circulating in 

the bloodstream at 24 hours after administration, it was found that frequent 

administration of relatively high dose of siRNA (2.5 o 7.5mg/kg, 7-10 doses) was 

required for effective gene-silencing and anti-tumour effect.  In contrast to this, we 

required much lower doses of siRNA to produce a comparable outcome from our 

HFDM-formulated particles (2 mg/kg, 3 doses) (Figure 5 A).  Indeed, our dosing is 

comparable to other PEGylated cationic systems such as SNALP (Stable nucleic 

acid-lipid particles; 2mg/kg, 6 doses) 4 or LPD particles (1.2mg/kg, 3 doses) 5.  As 

shown in Figure 5 A, with three doses of treatments, there was a 50% decrease in 

tumour size for E6/7 siRNA-treated mice compared to mice in the control groups.  
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This result is encouraging as it was not only comparable to other studies 4,35,36, but the 

anti-tumour effect was also similar to that achieved from cisplatin treatments using a 

clinically effective dosage (Figure 5 C).  However, it is difficult to assess the 

knockdown of E6/7 in these tumours at the termination of the experiment as the 

tumour cells which had taken up the E6/7 siRNA would likely have undergone 

apoptosis during the course of the experiment.  Nevertheless, given the successful 

knockdown of the GFP target gene in tumours with the use of siGFP (Figure 4 B), it 

is reasonable to conclude that the anti-tumour effect observed following E6/7 siRNA 

treatments was at least partially contributed to by the specific knockdown of E6 and 

E7 in tumours.  It must be noted, however, that siRNAs were administered into mice 

when tumour burden was small in our study.  Although similar approaches have been 

employed in other studies 6,32, it is important in the future to establish the optimal 

treatment time points and dosing schedule for our HFDM-formulated particles in this 

TC-1 tumour model.  This can be achieved via performing a detailed pharmacokinetic 

and pharmacodynamic study on these particles which will in turn improve our 

understanding of the clinical applicability of these siRNA-entrapped 

HFDM-formulated particles. 

 

While our work presents an advance in bringing siRNA forward as a cervical cancer 
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therapeutic agent, monotherapy in cancer treatment is rarely sufficient to completely 

eradicate tumour cells in the body.  This was evident from our tumour growth data 

where mice treated with either E6/7 siRNA or cisplatin still have tumours of 

significant size at the end-point (Figure 5 C).  Although increasing the dose of 

treatment may produce a better outcome, the combination approach presents as a 

much more attractive treatment option.  However, contrary to our previously 

published data using E6/7 short hairpin RNA (shRNA) and cisplatin treatment in 

HeLa cells1, we found no added benefit for this combined approach with siRNA, 

regardless of the sequence of treatment (Figures 6 A and B).  Although one may 

attribute this finding to the difference in duration of action between siRNA and 

shRNA, we also showed that several doses of siRNA treatment in vivo produced the 

same outcome (Figure 6 C).  At this time, the exact mechanism behind this 

discrepancy between these two studies is not well understood.  Despite this, our 

results, along with other in vitro studies performed using either HPV16 21 or 

HPV18-expressing cell lines 22,37, suggest that the knockdown of E6/7 may render 

these cancer cells more resistant to cisplatin treatment, possibly through p53 pathways 

21,22.  While the combination therapy with other forms of chemotherapeutic agent, 

such as paclitaxel, may be beneficial 21,37, the study performed by Liu and colleagues 

also indicated that the target sequence of the E6/7 siRNA is crucial for a successful 
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outcome37.  Co-administration of siRNAs which target other genes that are also 

over-expressed in cervical cancer cells, such as epidermal growth factor receptor 

(EGFR) 5,38 or Bcl-2 39,40, may also be beneficial.  Overall, the choice of siRNA 

target site, type and dose of chemotherapeutic agent used as well as treatment time 

points should all be taken into consideration when designing a better treatment 

regimen.  Our development of effective and easy-to-prepare delivery particles for 

siRNA delivery will allow faster screening for in vivo application and enable rapid 

clinical translation. 

 

In conclusion, this is the first paper describing the systemic use of E6/7 siRNA for 

treatment of cervical cancer.  We showed for the first time that the Hydration of 

Freeze-Dried Matrix (HFDM) method is a feasible way to formulate stable and 

efficient siRNA delivery particles which result in knockdown of the target gene in 

tumours following systemic administration.  Using these particles, we demonstrated 

a sequence-specific anti-tumour effect in a subcutaneous cervical cancer model.  

While further studies are required to fully investigate the 

pharmacokinetic/pharmacodynamic profiles of our lipidic particles as well as their 

potential to induce cytokines following administration, the simplicity of preparation 

and the superior product stability are major advancements for the in vivo application 
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of siRNA.   Our technology offers an innovative approach for formulating siRNA as 

effective cancer therapeutics and can also be applied to other forms of cancer. 
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Materials and Methods 

Materials 

Dioleoyl trimethylammonium propane (DOTAP) and cholesterol were purchased 

from Sigma (St Louis, MO).  Polyethylene Glycol (PEG)2000-C16Ceramide 

conjugate was from Avanti Polar Lipids (Alabaster, AL) and 

dioleoylphosphatidylethanolamine (DOPE) was from Northern Lipids (Vancouver, 

Canada). 

 

Control oligodeoxynucleotides (ODN) with sense sequence of 

5p-GTCAGAAATAGAAACTGGTCATC-3p and antisense sequence of 

5p-GATGACCAGTTTCTATTTCTGAC-3p were obtained from Invitrogen (Carlbad, 

CA).  SiRNA which targets both E6 and E7 (E6 and E7 are produced by the same 

transcriptional unit) (5p-GCAACAGUUACUGCGACGUUU-3p; 5p- 

ACGUCGCAGUAACUGUUGCUU-3p) was obtained from Sigma-Aldrich (St Louis, 

MO) in annealed form.  Similarly, Green fluorescent protein (GFP) targeted siRNA 

(5p-GCACGACUUCUUCAAGUCCUU-3p; 

5p-GGACUUGAAGAAGUCGUGCUU-3p) and control siRNA (5p- 

UUAUGCCGAUCGCGUCACAUU-3p; 5p-UGUGACGCGAUCGGCAUAAUU-3p) 

were also purchased from Sigma-Aldrich. 
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TC-1 cells (murine C57B/6 lung epithelial cells transformed with HPV 16 E6/7 and 

ras oncogenes) were obtained from TC Wu 41.  TC-1 GFP+ve cells were prepared 

according to the protocol described in Gu et al 42.  All cells were cultured and 

maintained in Dulbeccops Modified Eagle Media (DMEM; Invitrogen, Carlsbad, CA) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS; Bovoge, Keilor 

East, Australia), 0.2% primocin (Invivogen, San Diego, CA) and 2mM L-glutamine 

(Invitrogen).  Primocin was included in the media in order to prevent mycoplasma 

infection of the cells. 

 

All other chemicals and solvents used were of at least analytical grade. 

 

Methods 

Liposome Formulations 

Non-PEGylated Lipoplexes 

DOTAP/DOPE (1:1 molar ratio) liposomes were prepared using the hydration of lipid 

film method as described previously 43.  Briefly, the required amount of lipids were 

dissolved in chloroform in a round-bottomed flask.  Chloroform was then removed 

under low pressure using a rotary evaporator and a lyophiliser (ALPHA 1-2 LDplus, 
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Martin Christ, Germany).  Dried lipid film was hydrated using sterile 5% dextrose 

solution with the final liposome concentration being 5mM.  Liposomes were 

subsequently extruded through 800nm x 5, 400nm x 5, 200nm x 5, 100nm x 5 and 

50nm x 5 NucleoporeTM track-etched membranes using LipexTM extruder under 

nitrogen pressure of up to 500psi.  Extruded liposomes were left at room temperature 

for an hour before being stored at 4°C.  Liposomes were then complexed with the 

required amount of nucleic acids at an Nitrogen:Phosphate (N:P) ratio of 4 

immediately before in vitro or in vivo studies. 

 

HFDM-formulated Nucleic acids-Entrapped PEGylated lipid particles 

Nucleic acid-entrapped PEGylated lipid particles were prepared as previously 

described 7.  Briefly, required amounts of DOTAP, cholesterol, and 

PEG2000-C16Ceramide with or without DOPE were mixed with oligonucleotides or 

siRNA at an N:P ratio of 4 in a sucrose-containing water/tert-butanol (1:1 v/v) 

co-solvent system.  DOTAP, cholesterol, DOPE and PEG2000-C16Ceramide with a 

molar ratio of 50:35:5:10 was used.  The mixture was then snap-frozen and 

freeze-dried overnight.  Freeze-dried matrix was then hydrated with sterile water 

immediately before use so that the final product contained 40µg oligonucleotides or 

siRNA in 300µL of isotonic sucrose solution. 
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In Vitro Studies 

siRNA Transfection Study and Gene-knockdown Analysis 

TC-1 cells were seeded the day before the transfection experiment at a density of  

100 000 cells/well in a 6-well plate.  DOTAP/DOPE liposomes were used to 

complex with HPV 16 E6/7 siRNA and control siRNA at an N:P ratio of 4.  One mL 

of 40nM liposome-entrapped siRNA suspended in antibiotic-free complete 

Dulbeccops Modified Eagle Media (DMEM) was then added to each well.  SiRNAs 

were left on cells for 8 hours and cells were then incubated in primocin-containing 

DMEM culture media overnight at 37°C.  

 

After overnight incubation, total RNA was isolated from the cells using Trizol reagent 

(Invitrogen) according to manufacturerps protocol.  RNA (2µg) was subsequently 

reverse-transcribed using Omniscript RT kit (Qiagen, Victoria, Australia).  Real-time 

Polymerase Chain Reaction (PCR) was performed on a Corbett Rotor-Gene 3000 

(Qiagen) using 0.1µL of complementary DNA (cDNA) for each sample or the 

comparable amount of RNA extract with no addition of reverse transcriptase.  A 

standard curve was also generated using 0.002-0.1 µL of cDNA per reaction and all 

reactions were performed in 20µL in triplicates.  SYBR green (Applied Biosystems, 
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Warrington, UK) was used to detect products and 200nM of the following primers 

were used: E6/7 forward 5p-AAGCAACAGTTACTGCGACGTG-3p, E6/7 reverse 

5p-GCCCATTAACAGGTCTTCCAAA-3p, �-actin forward 

5p-GCTACAGCTTCACCACCACA-3p and �-actin reverse 

5p-TCTCCAGGGAGGAAGAGGAT-3p.  PCR was set at 94°C initially for 10 

minutes, followed by 40 cycles of 95°C x 10s, 60°C x 15s and 72°C x 20s.  Results 

were analysed using Rotor-Gene 6000 series software (Qiagen).  The relative 

amount of cDNA in each sample was normalised using �-actin and melt curve was 

used to verify specificity. 

 

Cell Viability Assay 

TC-1 cells were seeded in a 48-well plate at a seeding density of 3000 cells/well the 

day before the experiment.  HPV16 E6/7 siRNA or control siRNA was complexed 

with DOTAP/DOPE liposomes at an N:P ratio of 4.  One hundred µL of 40nM 

siRNA-containing lipoplexes or empty liposomes suspended in OptiMemTM was then 

applied to each well.  After 4 hours of incubation, cells were then washed with 

phosphate-buffered saline (PBS) and were incubated in primocin-containing complete 

DMEM media for 4 days.  All treatment was performed in triplicate (n=3).  Cell 
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Titre GloTM cell viability assay was subsequently performed according to 

manufacturerps instructions. 

 

For cisplatin experiments, cells were treated with siRNA and then cisplatin, or in the 

reverse order.  SiRNA was applied to cells as described above and cells were treated 

with cisplatin (Sigma) at various concentrations from 0 to 50µM in 

primocin-containing DMEM complete media (250µL/well) for 24 hours.  Cell Titre 

GloTM viability assay was performed at the end of day 4 and each treatment condition 

was performed in quadruplicate (n=4). 

 

Serum Stability Study 

Non-PEGylated and HFDM-formulated PEGylated liposome formulations (100 µL) 

which contained 8µg of siRNA were incubated with 60µL of non-heat inactivated 

fetal bovine serum (FBS) at 37°C.  At various time points, samples were mixed with 

4 mL of filtered distilled water and the particle size was measured by photon 

correlation spectroscopy using a Zetasizer 3000TM (Malvern Instruments, Malvern, 

UK).  All measurements were carried out at room temperature and three samples 

were measured at each time point (n=3). 

 



Page 27 

Animal Studies 

All animal experiments were approved by the University of Queensland Animal 

Ethics Committee and two-month-old female C57B/6 mice (Perth, ARC) were used in 

all studies. 

 

Pharmacokinetics (PK) Study of HFDM-formulated Particles 

Mice were injected with HFDM-formulated lipid particles loaded with 40µg of 

fluorescein (FITC)-labelled oligonucleotides.  At different time points, around 50µL 

of blood was collected from mice and serum was isolated as previously described 44.  

FITC-oligonucleotdies were extracted from liposomes using the method described 

previously 5 and the fluorescence intensity of the samples was measured using a 

Fluostar® plate reader at excitation and emission wavelengths of 485nm and 520nm, 

respectively.  FITC-oligonucleotide concentration in each sample was calculated 

from a standard curve.  Four to five mice were used in this experiment (n = 4-5) and 

the PK profile was analysed using non-compartmental methods using WinNonlin 

Professional (version 5.2).  The key PK parameters provided from this analysis were: 

area under curve (AUC), clearance (CL), mean residence time (MRT), and steady 

state volume of distribution (Vss), and terminal phase half life was extrapolated from 

the last five time points. 
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In Vivo Gene-silencing Experiment 

Subcutaneous TC-1 GFP+ve tumours were established in mice as described above.  

On day 13 and 14 post tumour cell inoculation, mice were treated intravenously with 

either saline, HFDM-formulated lipid particles containing 40µg of either GFP 

targeted siRNA, or control siRNA.  Tumours were subsequently harvested on day 15 

and RNA was isolated using TrizolTM reagent (Invitrogen) according to 

manufacturerps protocol. 

 

RNA (2µg) isolated from the tumours was reverse-transcribed using an Omniscript 

RT kit (Qiagen, Victoria, Australia).  Real-time PCR analysis was performed as 

described earlier. The following primers were used: GFP forward 

5p-ACGTAAACGGCCACAAGTTC-3p, GFP reverse 

5p-GGTCTTGTAGTTGCCGTCGT-3p, �-actin forward 

5p-GCTACAGCTTCACCACCACA-3p and �-actin reverse 

5p-TCTCCAGGGAGGAAGAGGAT-3p. 

 

Liver Toxicity Study 
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Tumour-free mice were treated intravenously with either isotonic sucrose solution or 

HFDM-formulated lipid particles containing 20µg or 40 µg of siRNA.  Similar to 

other reported studies 23,33,45,46, blood was collected from mice at 24 hours after the 

administration and three mice were used for each treatment group (n=3).  Serum was 

then isolated from the samples as previously described and samples were stored at 

4°C before analysis.  The assay was performed using Alanine transaminase (ALT) 

detection kit (Bioo Scientific, Austin, TX) according to manufacturerps protocol.  All 

samples were tested in triplicate and ALT enzyme (12.5 ng/µL, Roche Diagnostics, 

Mannheim, Germany) was used as a positive control to test the validity of the assay. 

 

In vivo Tumour Growth Inhibition Study 

For the lung metastasis study, 0.5 million TC-1 cells suspended in 100µL of sterile 

PBS were injected intravenously into each mouse.  On day 1, 4, 7 and 11 after 

tumour cell injection, mice were treated with 5% dextrose solution, empty 

DOTAP/DOPE liposomes, liposome-complexed E6/7 siRNA or control siRNA.  

Liposome-siRNA formulations were prepared at a concentration no greater than 24µg 

siRNA/300µL at an N:P ratio of 4 to prevent particle aggregations.  For mice 

receiving 24 µg of siRNA per dose, the prepared formulation was administered 

intravenously into each mouse without further volume reduction step.  When higher 
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siRNA dosage was required, formulations were concentrated by centrifugation at 

1000g using a 100K Ultra-free centrifugation filter (Millipore, New South Wales, 

Australia).  The final formulation contained 80µg of siRNA in 200 µL and was 

administered to each mouse.  Six to nine mice were used per treatment group and the 

health of the mice was monitored over the course of the study.  All mice were 

sacrificed when they showed signs of illness, such as rough hair coat, hunched 

posture, laboured breathing, or significant weight loss. 

 

For the subcutaneous tumour study, one million TC-1 cells suspended in 100µL of 

sterile PBS were injected subcutaneously into each mouse on the right abdominal 

side.  On days 3, 7 and 10 after tumour cell inoculation, mice were treated with 

saline, vehicle only, naked E6/7 siRNA or HFDM-formulated lipid particles 

containing E6/7 siRNA or control siRNA.  All formulations were prepared at an N:P 

ratio of 4, and 40µg of siRNA was administered intravenously per dose.  For the 

cisplatin experiment, 90µg of cisplatin suspended in 200µL PBS was administered 

into each mouse via intraperitoneal injection on day 8 and 11 after tumour cell 

inoculation.  PBS was used as a negative control.  Five to six mice were used per 

treatment group (n=5-6) and tumour size was monitored using callipers during the 

course of the experiment.   
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Statistical Analysis 

All data was analysed using GraphPad PrismTM software and the student t-test was 

performed to assess the difference between treatment and control groups.  For 

survival studies, the Mantel-Cox log-rank test was employed. 
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Figure Legends 

Figure 1 Effect of E6/7-targeted siRNA in HPV16 E6/7-expressing TC-1 cells.  (A) 

E6/7 siRNA which was delivered using DOTAP/DOPE liposomes reduced E6/7 

mRNA level by 70% in TC-1 cells.  Real-time PCR analysis was performed at 24 

hours post-treatment.  **p<0.01, significantly different compared to control siRNA 

treatment.  (B) Decreased TC-1 cell viability was observed after E6/7 siRNA 

treatment when delivered using DOTAP/DOPE liposomes.  This decrease was not 

observed when cells were treated with control siRNA or empty liposomes.  Tests 

were performed in triplicate four days after treatment using Cell Titre GloTM assay.  

* p<0.05, significantly different to control siRNA treatment.  All bars and error bars 

represent the mean value and the corresponding SEM. 

 

Figure 2 Treatment of lung metastasis using cationic liposome complexed 

E6/7-targeted siRNA.  (A) Mice treated with three doses of 24µg of E6/7 siRNA on 

day 1, 4 and 7 after TC-1 cell inoculation had delayed onset of illness but had no 

significant improvement in overall survival compared to mice treated with controls.  

Six to eight mice were used per treatment group (n=6-8).   (B) In contrast, mice 

treated with 80µg of E6/7 siRNA for 4 doses on day 1, 4, 7 and 11 after tumour cell 
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inoculation showed prolonged survival compared to mice in all three control groups. 

**P < 0.005, significantly different from control groups (n = 7-9). 

 

Figure 3 Characteristics of non-PEGylated and HFDM-formulated PEGylated 

siRNA-loaded lipid particles in the presence of serum.  (A) Cationic DOTAP/DOPE 

lipoplexes formulated at an N:P ratio of 4 aggregated rapidly after incubation with 

serum at 37°C.  In contrast, the size of HFDM-formulated lipid particles (N:P 4) 

remained constant even after 24 hours of incubation in serum (B).  Three samples 

were prepared for each treatment condition and time point (n=3) and Zave particle size 

was recorded from photon correlation spectroscopy analysis.  Each point and error 

bar represents the mean value and the corresponding SD. 

 

Figure 4 Characteristics and effect of nucleic acid-loaded HFDM-formulated lipid 

particles in vivo. (A) Serum concentration profile of HFDM-formulated 

FITC-Oligonucleotide-loaded lipid particles after i.v. administration.  Points and 

error bars represent the mean and SEM, respectively, from samples collected from 4 

to 5 mice at different time points.  (B) Knockdown of GFP level was observed in 

tumours after i.v. administration of siGFP-loaded HFDM-formulated lipid particles to 

mice bearing subcutaneous GFP-expressing tumours.  Treatment was performed on 
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days 13 and 14 after tumour cell inoculation and GFP mRNA levels were measured 

on day 15 using real-time PCR analysis.  Tests were performed in triplicate and five 

to six mice were used per treatment group (n = 5-6).  (C) Liver toxicity study of 

siRNA-loaded HFDM-formulated lipid particles.  No elevation of serum ALT 

activity was detected at 24 hours after i.v. treatment of lipid particles containing either 

20µg or 40µg of siRNA.  Three mice were used per treatment group (n=3) and tests 

were performed in triplicate.  Each bar and error bar represent the mean value and 

the corresponding SEM.  ALT enzyme (12.5 ng/µL) was used as a positive control. 

 

Figure 5 Inhibition of subcutaneous tumour growth in C57B/6 mice by E6/7-targeted 

siRNA.  All treatments were administered on days 3, 7 and 10 post tumour cell 

inoculation and 40µg siRNA was used per dose.  (A) Mice treated with E6/7 siRNA 

formulated in HFDM-formulated lipid particles had significant reduced tumour size 

compared to mice treated with saline or with control siRNA.  The error bars 

represent the SEMs of tumour size of 5 mice.  ** p<0.01, significantly different from 

saline or control siRNA treated groups.  (B) Distribution of tumour size on day 16 

for mice treated with saline, vehicle only or naked E6/7 siRNA.  No difference in 

tumour size was observed between three treatment groups.  (C) E6/7 siRNA 

formulated in lipid particles produced similar tumour growth inhibition effect 
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compared to two doses of cisplatin (90µg/dose/mouse) treatments on day 8 and 11.  

Tumour size was measured on day 14 of the experiment.  *p<0.05, significantly 

different from vehicle or control siRNA treated group. 

 

Figure 6 Combined treatment of E6/7 siRNA and cisplatin in vitro and in vivo.  

Treatment of TC-1 cells with E6/7 siRNA and cisplatin did not result in greater 

reduction of cell viability than cells treated with either treatment alone.  This was 

irrespective of the sequence of treatment, with similar results observed when cells 

were treated with E6/7 siRNA first followed by cisplatin (A) or in the reverse order 

(B).  SiRNAs (40nM) and cisplatin (0-50µM) were applied to cells for 4 hours and 

24 hours, respectively.  All tests were performed in quadruplicate on day 4 using 

Cell Titre GloTM assay and the error bars represent the SEMs (n=4).  (C) No 

enhanced tumour growth inhibition effect was observed when mice bearing 

subcutaneous tumours were treated with both 40µg E6/7 siRNA and 90µg cisplatin.  

Mice were treated with siRNA on day 3, 7 and 10 and cisplatin on day 8 and 11 (n = 

5-6).  Tumour size was measured on day 14 of the experiment.  * p<0.05, 

significantly different compared to vehicle-treated group. 

 

 














