14 research outputs found

    Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19

    Get PDF
    This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: All satellite data used in this work is publicly available through NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/) and ESA Sentinel-5P Pre-Operations Data Hub (https://s5phub.copernicus.eu/). GMI model output and policy response data are available upon request from the authors as is code to process all data sets. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data available from authors upon request.China’s policy interventions to reduce the spread of the coronavirus disease 2019 have environmental and economic impacts. Tropospheric nitrogen dioxide indicates economic activities, as nitrogen dioxide is primarily emitted from fossil fuel consumption. Satellite measurements show a 48% drop in tropospheric nitrogen dioxide vertical column densities from the 20 days averaged before the 2020 Lunar New Year to the 20 days averaged after. This is 21% ± 5% larger than that from 2015–2019. We relate this reduction to two of the government’s actions: the announcement of the first report in each province and the date of a province’s lockdown. Both actions are associated with nearly the same magnitude of reductions. Our analysis offers insights into the unintended environmental and economic consequences through reduced economic activities.NAS

    Ambient air pollution and the prevalence of rhinoconjunctivitis in adolescents: A worldwide ecological analysis

    Get PDF
    Whether exposure to outdoor air pollution increases the prevalence of rhinoconjunctivitis in children is unclear. Using data from Phase Three of the International Study of Asthma and Allergies in childhood (ISAAC), we investigated associations of rhinoconjunctivitis prevalence in adolescents with model-based estimates of ozone, and satellite-based estimates of fine (diameter < 2.5 μm) particulate matter (PM2.5) and nitrogen dioxide (NO2). Information on rhinoconjunctivitis (defined as self-reported nose symptoms without a cold or flu accompanied by itchy watery eyes in the past 12 months) was available on 505,400 children aged 13–14 years, in 183 centres in 83 countries. Centre-level prevalence estimates were calculated and linked geographically with estimates of long-term average concentrations of NO2, ozone and PM2.5. Multi-level models were fitted adjusting for population density, climate, sex and gross national income. Information on parental smoking, truck traffic and cooking fuel was available for a restricted set of centres (77 in 36 countries). Between centres within countries, the estimated change in rhinoconjunctivitis prevalence per 100 children was 0.171 (95% confidence interval: − 0.013, 0.354) per 10% increase in PM2.5, 0.096 (− 0.003, 0.195) per 10% increase in NO2 and − 0.186 (− 0.390, 0.018) per 1 ppbV increase in ozone. Between countries, rhinoconjunctivitis prevalence was significantly negatively associated with both ozone and PM2.5. In the restricted dataset, the latter association became less negative following adjustment for parental smoking and open fires for cooking. In conclusion, there were no significant within-country associations of rhinoconjunctivitis prevalence with study pollutants. Negative between-country associations with PM2.5 and ozone require further investigation

    Spatially and seasonally resolved estimate of the ratio of organic mass to organic carbon

    Get PDF
    Particulate organic matter is of interest for air quality and climate research, but the relationship between ambient organic mass (OM) and organic carbon (OC) remains ambiguous both in measurements and in modeling. We present a simple method to derive an estimate of the spatially and seasonally resolved global, lower tropospheric, ratio between OM and OC. We assume ambient NO2 concentrations as a surrogate for fresh emission which mostly determines the continental scale OM/OC ratio. For this, we first develop a parameterization for the OM/OC ratio using the primary organic aerosol (POA) fraction of total OM estimated globally from Aerosol Mass Spectrometer (AMS) measurements, and evaluate it with high mass resolution AMS data. Second, we explore the ability of ground-level NO2 concentrations derived from the OMI satellite sensor to serve as a proxy for fresh emissions that have a high POA fraction, and apply NO2 data to derive ambient POA fraction. The combination of these two methods yields an estimate of OM/OC from NO2 measurements. Although this method has inherent deficiencies over biomass burning, free-tropospheric, and marine environments, elsewhere it offers more information than the currently used global-mean OM/OC ratios. The OMI-derived global OM/OC ratio ranges from 1.3 to 2.1 (μg/μgC), with distinct spatial variation between urban and rural regions. The seasonal OM/OC ratio has a summer maximum and a winter minimum over regions dominated by combustion emissions. This dataset serves as a tool for interpreting organic carbon measurements, and for evaluating modeling of atmospheric organics. We also develop an additional parameterization for models to estimate the ratio of primary OM to OC from simulated NOx concentrations

    A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments : applications to OMI

    Get PDF
    We describe a new algorithm for the retrieval of nitrogen dioxide (NO2) vertical columns from nadir-viewing satellite instruments. This algorithm (SP2) is the basis for the Version 2.1 OMI This algorithm (SP2) is the basis for the Version 2.1 Ozone Monitoring Instrument (OMI) NO2 Standard Product and features a novel method for separating the stratospheric and tropospheric columns. NO2 Standard Product and features a novel method for separating the stratospheric and tropospheric columns. The approach estimates the stratospheric NO2 directly from satellite data without using stratospheric chemical transport models or assuming any global zonal wave pattern. Tropospheric NO2 columns are retrieved using air mass factors derived from high-resolution radiative transfer calculations and a monthly climatology of NO2 profile shapes. We also present details of how uncertainties in the retrieved columns are estimated. The sensitivity of the retrieval to assumptions made in the stratosphere-troposphere separation is discussed and shown to be small, in an absolute sense, for most regions. We compare daily and monthly mean global OMI NO2 retrievals using the SP2 algorithm with those of the original Version 1 Standard Product (SP1) and the Dutch DOMINO product. The SP2 retrievals yield significantly smaller summertime tropospheric columns than SP1, particularly in polluted regions, and are more consistent with validation studies. SP2 retrievals are also relatively free of modeling artifacts and negative tropospheric NO2 values. In a reanalysis of an INTEX-B validation study, we show that SP2 largely eliminates an similar to 20% discrepancy that existed between OMI and independent in situ springtime NO2 SP1 measurements

    India Is Overtaking China as the World’s Largest Emitter of Anthropogenic Sulfur Dioxide

    No full text
    Abstract Severe haze is a major public health concern in China and India. Both countries rely heavily on coal for energy, and sulfur dioxide (SO2) emitted from coal-fired power plants and industry is a major pollutant contributing to their air quality problems. Timely, accurate information on SO2 sources is a required input to air quality models for pollution prediction and mitigation. However, such information has been difficult to obtain for these two countries, as fast-paced changes in economy and environmental regulations have often led to unforeseen emission changes. Here we use satellite observations to show that China and India are on opposite trajectories for sulfurous pollution. Since 2007, emissions in China have declined by 75% while those in India have increased by 50%. With these changes, India is now surpassing China as the world’s largest emitter of anthropogenic SO2. This finding, not predicted by emission scenarios, suggests effective SO2 control in China and lack thereof in India. Despite this, haze remains severe in China, indicating the importance of reducing emissions of other pollutants. In India, ~33 million people now live in areas with substantial SO2 pollution. Continued growth in emissions will adversely affect more people and further exacerbate morbidity and mortality
    corecore