22 research outputs found

    Persistent organic pollutants in infants and toddlers: Relationship between concentrations in matched plasma and faecal samples

    Full text link
    Early-childhood biomonitoring of persistent organic pollutants (POPs) is challenging due to the logistic and ethical limitations associated with blood sampling. We investigated using faeces as a non-invasive matrix to estimate internal exposure to POPs. The concentrations of selected POPs were measured in matched plasma and faecal samples collected from 20 infants/toddlers (aged 13 ± 4.8 months), including a repeat sample time point for 13 infants (~ 5 months apart). We observed higher rates of POP quantification in faeces (2 g dry weight) than in plasma (0.5 mL). Among the five chemicals that had quantification frequencies over 50% in both matrices, except for HCB, log concentration in faeces (Cf) and blood (Cb) were correlated (r > 0.74, P p.p′-dichlorodiphenyldichloroethylene (p,p′-DDE), 2,3′,4,4′,5-pentachlorobiphenyl (PCB118), 2,2′,3,4,4′,5′-pentachlorobiphenyl (PCB138) and 2,2′,4,4′,5,5′-pentachlorobiphenyl (PCB153). We determined faeces:plasma concentration ratios (Kfb), which can be used to estimate Cb from measurements of Cf for infants/toddlers. For a given chemical, the variation in Kfb across individuals was considerable (CV from 0.46 to 0.70). Between 5% and 50% of this variation was attributed to short-term intra-individual variability between successive faecal samples. This variability could be reduced by pooling faeces samples over several days. Some of the remaining variability was attributed to longer-term intra-individual variability, which was consistent with previously reported observations of a decrease in Kfb over the first year of life. The strong correlations between Cf and Cb demonstrate the promise of using faeces for biomonitoring of these compounds. Future research on the sources of variability in Kfb could improve the precision and utility of this technique

    Pooled biological specimens for human biomonitoring of environmental chemicals: Opportunities and limitations

    Get PDF
    Biomonitoring has become the ‘gold standard’ in assessing chemical exposures, and plays an important role in risk assessment. The pooling of biological specimens – combining multiple individual specimens into a single sample – can be used in biomonitoring studies to monitor levels of exposure and identify exposure trends, or to identify susceptible populations in a cost-effective manner. Pooled samples provide an estimate of central tendency, and may also reveal information about variation within the population. The development of a pooling strategy requires careful consideration of the type and number of samples collected, the number of pools required, and the number of specimens to combine per pool in order to maximize the type and robustness of the data. Creative pooling strategies can be used to explore exposure-outcome associations, and extrapolation from other larger studies can be useful in identifying elevated exposures in specific individuals. The use of pooled specimens is advantageous as it saves significantly on analytical costs, may reduce the time and resources required for recruitment, and in certain circumstances, allows quantification of samples approaching the limit of detection. In addition, use of pooled samples can provide population estimates while avoiding ethical difficulties that may be associated with reporting individual results

    Polybrominated diphenyl ether serum concentrations in a Californian population of children, their parents, and older adults: an exposure assessment study

    No full text
    BackgroundPolybrominated diphenyl ethers (PBDEs) are used as flame retardants in many household items. Given concerns over their potential adverse health effects, we identified predictors and evaluated temporal changes of PBDE serum concentrations.MethodsPBDE serum concentrations were measured in young children (2-8 years old; N = 67), parents of young children (<55 years old; N = 90), and older adults (≥55 years old; N = 59) in California, with concurrent floor wipe samples collected in participants' homes in 2008-2009. We also measured serum concentrations one year later in a subset of children (N = 19) and parents (N = 42).ResultsPBDE serum concentrations in children were significantly higher than in adults. Floor wipe concentration is a significant predictor of serum BDE-47, 99, 100 and 154. Positive associations were observed between the intake frequency of canned meat and serum concentrations of BDE-47, 99 and 154, between canned meat entrees and BDE-154 and 209, as well as between tuna and white fish and BDE-153. The model with the floor wipe concentration and food intake frequencies explained up to 40% of the mean square prediction error of some congeners. Lower home values and renting (vs. owning) a home were associated with higher serum concentrations of BDE-47, 99 and 100. Serum concentrations measured one year apart were strongly correlated as expected (r = 0.70-0.97) with a slight decreasing trend.ConclusionsFloor wipe concentration, food intake frequency, and housing characteristics can explain 12-40% of the prediction error of PBDE serum concentrations. Decreasing temporal trends should be considered when characterizing long-term exposure
    corecore