529 research outputs found

    Treatment of cancer with cryochemotherapy

    Get PDF
    Cryosurgery employs freezing to destroy solid tumours. However, frozen cells can survive and cause cancer recurrence. Bleomycin, an anticancer drug with a huge intrinsic cytotoxicity is normally not very effective because it is nonpermeant. We report that freezing facilitates bleomycin penetration into cells making it toxic to cryosurgery surviving cells at concentrations that are non-toxic systemically

    Epigenetic gene regulation by Janus kinase 1 in diffuse large B-cell lymphoma

    Get PDF
    Janus kinases (JAKs) classically signal by activating STAT transcription factors but can also regulate gene expression by epigenetically phosphorylating histone H3 on tyrosine 41 (H3Y41-P). In diffuse large B-cell lymphomas (DLBCLs), JAK signaling is a feature of the activated B-cell (ABC) subtype and is triggered by autocrine production of IL-6 and IL-10. Whether this signaling involves STAT activation, epigenetic modification of chromatin, or both mechanisms is unknown. Here we use genetic and pharmacological inhibition to show that JAK1 signaling sustains the survival of ABC DLBCL cells. Whereas STAT3 contributed to the survival of ABC DLBCL cell lines, forced STAT3 activity could not protect these cells from death following JAK1 inhibition, suggesting epigenetic JAK1 action. JAK1 regulated the expression of nearly 3,000 genes in ABC DLBCL cells, and the chromatin surrounding many of these genes was modified by H3Y41-P marks that were diminished by JAK1 inhibition. These JAK1 epigenetic target genes encode important regulators of ABC DLBCL proliferation and survival, including IRF4, MYD88, and MYC. A small molecule JAK1 inhibitor cooperated with the BTK inhibitor ibrutinib in reducing IRF4 levels and acted synergistically to kill ABC DLBCL cells, suggesting that this combination should be evaluated in clinical trials.This research was supported by the Intramural Research Program of the NIH National Cancer Institute, the University of Wisconsin–Madison (UW–Madison) start-up funds, KL2 Scholar Awards UL1TR0000427 and KL2TR000428, the National Cancer Institute Grant 1R01 CA187299 (to L.R.), and the UW–Madison T32 Hematology Training Award T32 HL07899 (to A.C.D.)

    Efficient and long-lived quantum memory with cold atoms inside a ring cavity

    Full text link
    Quantum memories are regarded as one of the fundamental building blocks of linear-optical quantum computation and long-distance quantum communication. A long standing goal to realize scalable quantum information processing is to build a long-lived and efficient quantum memory. There have been significant efforts distributed towards this goal. However, either efficient but short-lived or long-lived but inefficient quantum memories have been demonstrated so far. Here we report a high-performance quantum memory in which long lifetime and high retrieval efficiency meet for the first time. By placing a ring cavity around an atomic ensemble, employing a pair of clock states, creating a long-wavelength spin wave, and arranging the setup in the gravitational direction, we realize a quantum memory with an intrinsic spin wave to photon conversion efficiency of 73(2)% together with a storage lifetime of 3.2(1) ms. This realization provides an essential tool towards scalable linear-optical quantum information processing.Comment: 6 pages, 4 figure

    FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas.

    Get PDF
    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients

    Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter

    Get PDF
    Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients

    Sex bias in biopsy samples collected from free-ranging dolphins

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in European Journal of Wildlife Research 56 (2010): 151-158, doi:10.1007/s10344-009-0299-7.Biological samples of free-ranging dolphins are increasingly used to gain information on population structure and ecology. In small cetaceans, the gender of individuals usually cannot be determined at sea, and population sex ratio has to be inferred indirectly. We used molecular sexing to determine the gender of 340 biopsy samples of bottlenose dolphins, Tursiops truncatus, spotted dolphins, Stenella frontalis, and common dolphins, Delphinus delphis, collected around the Azores and Madeira. Sex ratio was globally skewed in favor of males, and differed between species and archipelagos. Skew was probably influenced by the selectivity of biopsy collectors and seasonal or year-round predominance of males in natural populations. Skew was also influenced by sampling duration and intensity. In the Azores, when several samples were successively collected within the same group, the proportion of female samples decreased as a function of sample order. This trend indicated a tendency for females to increasingly avoid the boat while samples were being collected. It showed that males and females reacted differently to the perturbation caused by the biopsy sampling process (i.e. sample collection and driving style).Portuguese Foundation for Science and Technology (FCT) and the FEDER program for funding the CETAMARH (POCTI/BSE/38991/01) and the GOLFINICHO (POCI/BIA-BDE/61009/2004) projects, S.Q.'s post-doctoral grants (IMAR/FCT- PDOC-006/2001-MoleGen and SFRH/BPD/19680/2004), M.A.S.'s doctoral (SFRH/BD/8609/2002) and post-doctoral (SFRH/BPD/29841/2006) grants, S.M.'s investigation assistant grant (CETAMARHII/POCTI/BSE/38991/2001) and I.C.'s investigation assistant grants (IMAR/FCT/GOLFINICHO/001/2005 and IMAR/FCT/GOLFINICHO/004/2006). FCT for its pluri-annual funding to Research Unit #531 and the EU funded program Interreg IIIb for funding the MACETUS project (MAC/4.2/M10) as well as R.P. and S.M.’s grants (IMAR/INTERREGIIIb/MACETUS/MAC1/2)

    Insulin-Regulated Srebp-1c and Pck1 mRNA Expression in Primary Hepatocytes from Zucker Fatty but Not Lean Rats Is Affected by Feeding Conditions

    Get PDF
    Insulin regulates the transcription of genes for hepatic glucose and lipid metabolism. We hypothesized that this action may be impaired in hepatocytes from insulin resistant animals. Primary hepatocytes from insulin sensitive Zucker lean (ZL) and insulin resistant Zucker fatty (ZF) rats in ad libitum or after an overnight fasting were isolated, cultured and treated with insulin and other compounds for analysis of gene expression using real-time PCR. The mRNA levels of one insulin-induced (Srebp-1c) and one insulin-suppressed (Pck1) genes in response to insulin, glucagon, and compactin treatments in hepatocytes from ad libitum ZL and ZF rats were analyzed. Additionally, the effects of insulin and T1317 on their levels in hepatocytes from ad libitum or fasted ZL or ZF rats were compared. The mRNA levels of Srebp-1c, Fas, and Scd1, but not that of Insr, Gck and Pck1, were higher in freshly isolated hepatocytes from ad libitum ZF than that from ZL rats. These patterns of Srebp-1c and Pck1 mRNA levels remained in primary hepatocyte cultured in vitro. Insulin's ability to regulate Srebp-1c and Pck1 expression was diminished in hepatocytes from ad libitum ZF, but not ZL rats. Glucagon or compactin suppressed Srebp-1c mRNA expression in lean, but not fatty hepatocytes. However, glucagon induced Pck1 mRNA expression similarly in hepatocytes from ad libitum ZL and ZF rats. Insulin caused the same dose-dependent increase of Akt phosphorylation in hepatocytes from ad libitum ZL and ZF rats. It synergized with T1317 to induce Srebp-1c, and suppressed Pck1 mRNA levels in hepatocytes from fasted, but not that from ad libitum ZF rats. We demonstrated that insulin was unable to regulate its downstream genes' mRNA expression in hepatocytes from ad libitum ZF rats. This impairment can be partially restored in hepatocytes from ZF rats after an overnight fasting, a phenomenon that deserves further investigation

    Identification of a Novel, Small Molecule Partial Agonist for the Cyclic AMP Sensor, EPAC1

    Get PDF
    Screening of a carefully selected library of 5,195 small molecules identified 34 hit compounds that interact with the regulatory cyclic nucleotide-binding domain (CNB) of the cAMP sensor, EPAC1. Two of these hits (I942 and I178) were selected for their robust and reproducible inhibitory effects within the primary screening assay. Follow-up characterisation by ligand observed nuclear magnetic resonance (NMR) revealed direct interaction of I942 and I178 with EPAC1 and EPAC2-CNBs in vitro. Moreover, in vitro guanine nucleotide exchange factor (GEF) assays revealed that I942 and, to a lesser extent, I178 had partial agonist properties towards EPAC1, leading to activation of EPAC1, in the absence of cAMP, and inhibition of GEF activity in the presence of cAMP. In contrast, there was very little agonist action of I942 towards EPAC2 or protein kinase A (PKA). To our knowledge, this is the first observation of non-cyclic-nucleotide small molecules with agonist properties towards EPAC1. Furthermore, the isoform selective agonist nature of these compounds highlights the potential for the development of small molecule tools that selectively up-regulate EPAC1 activity

    BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway

    Get PDF
    By diversifying antibody biological effector functions, class switch DNA recombination has a central role in the maturation of the antibody response. Here we show that BCR-signalling synergizes with Toll-like receptor (TLR) signalling to induce class switch DNA recombination. BCR-signalling activates the non-canonical NF-κB pathway and enhances the TLR-dependent canonical NF-κB pathway, thereby inducing activation-induced cytidine deaminase (AID), which is critical for class switch DNA recombination. Escherichia coli lipopolysaccharide (LPS) triggers dual TLR4/BCR-signalling and induces hallmarks of BCR-signalling, including CD79a phosphorylation and Ca2+ mobilization, and activates both the NF-κB pathways to induce AID and class switch DNA recombination in a PI(3)K p85α-dependent fashion. CD40-signalling activates the two NF-κB pathways to induce AID and class switch DNA recombination independent of BCR-signalling. Finally, dual BCR/TLR-engaging NP–lipopolysaccharide effectively elicits class-switched NP-specific IgG3 and IgG2b in mice. Thus, by integrating signals of the non-canonical and canonical NF-κB pathways, BCR and TLRs synergize to induce AID and T-cell-independent class switch DNA recombination
    • …
    corecore