82 research outputs found

    Inhibition of the Mitochondrial Enzyme ABAD Restores the Amyloid-β-Mediated Deregulation of Estradiol

    Get PDF
    Alzheimer's disease (AD) is a conformational disease that is characterized by amyloid-β (Aβ) deposition in the brain. Aβ exerts its toxicity in part by receptor-mediated interactions that cause down-stream protein misfolding and aggregation, as well as mitochondrial dysfunction. Recent reports indicate that Aβ may also interact directly with intracellular proteins such as the mitochondrial enzyme ABAD (Aβ binding alcohol dehydrogenase) in executing its toxic effects. Mitochondrial dysfunction occurs early in AD, and Aβ's toxicity is in part mediated by inhibition of ABAD as shown previously with an ABAD decoy peptide. Here, we employed AG18051, a novel small ABAD-specific compound inhibitor, to investigate the role of ABAD in Aβ toxicity. Using SH-SY5Y neuroblastoma cells, we found that AG18051 partially blocked the Aβ-ABAD interaction in a pull-down assay while it also prevented the Aβ42-induced down-regulation of ABAD activity, as measured by levels of estradiol, a known hormone and product of ABAD activity. Furthermore, AG18051 is protective against Aβ42 toxicity, as measured by LDH release and MTT absorbance. Specifically, AG18051 reduced Aβ42-induced impairment of mitochondrial respiration and oxidative stress as shown by reduced ROS (reactive oxygen species) levels. Guided by our previous finding of shared aspects of the toxicity of Aβ and human amylin (HA), with the latter forming aggregates in Type 2 diabetes mellitus (T2DM) pancreas, we determined whether AG18051 would also confer protection from HA toxicity. We found that the inhibitor conferred only partial protection from HA toxicity indicating distinct pathomechanisms of the two amyloidogenic agents. Taken together, our results present the inhibition of ABAD by compounds such as AG18051 as a promising therapeutic strategy for the prevention and treatment of AD, and suggest levels of estradiol as a suitable read-out

    Early Lung Function Testing in Infants with Aortic Arch Anomalies Identifies Patients at Risk for Airway Obstruction

    Get PDF
    BACKGROUND: Aortic arch anomalies (AAA) are rare cardio-vascular anomalies. Right-sided and double-sided aortic arch anomalies (RAAA, DAAA) are distinguished, both may cause airway obstructions. We studied the degree of airway obstruction in infants with AAA by neonatal lung function testing (LFT). PATIENTS AND METHODS: 17 patients (10 RAAA and 7 DAAA) with prenatal diagnosis of AAA were investigated. The median (range) post conception age at LFT was 40.3 (36.6-44.1) weeks, median body weight 3400 (2320-4665) g. Measurements included tidal breathing flow-volume loops (TBFVL), airway resistance (R(aw)) by bodyplethysmography and the maximal expiratory flow at functional residual capacity (V'(max)FRC) by rapid thoracic-abdominal compression (RTC) technique. V'(max)FRC was also expressed in Z-scores, based on published gender-, age and height-specific reference values. RESULTS: Abnormal lung function tests were seen in both RAAA and DAAA infants. Compared to RAAA infants, infants with DAAA had significantly more expiratory flow limitations in the TBFVL, (86% vs. 30%, p<0.05) and a significantly increased R(aw) (p = 0.015). Despite a significant correlation between R(aw) and the Z-score of V'(max)FRC (r = 0.740, p<0.001), there were no statistically significant differences in V'(max)FRC and it's Z-scores between RAAA and DAAA infants. 4 (24%) infants (2 RAAA, 2 DAAA) were near or below the 10(th) percentile of V'(max)FRC, indicating a high risk for airway obstruction. CONCLUSION: Both, infants with RAAA and DAAA, are at risk for airway obstruction and early LFT helps to identify and to monitor these infants. This may support the decision for therapeutic interventions before clinical symptoms arise

    Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction

    Get PDF
    The overall effect of brain zinc (Zn2+) in the progression and development of Alzheimer's disease (AD) is still not completely understood. Although an excess of Zn2+ can exacerbate the pathological features of AD, a deficit of Zn2+ intake has also been shown to increase the volume of amyloid plaques in AD transgenic mice. In this study, we investigated the effect of dietary Zn2+ supplementation (30 p.p.m.) in a transgenic mouse model of AD, the 3xTg-AD, that expresses both β amyloid (Aβ)- and tau-dependent pathology. We found that Zn2+ supplementation greatly delays hippocampal-dependent memory deficits and strongly reduces both Aβ and tau pathology in the hippocampus. We also evaluated signs of mitochondrial dysfunction and found that Zn2+ supplementation prevents the age-dependent respiratory deficits we observed in untreated 3xTg-AD mice. Finally, we found that Zn2+ supplementation greatly increases the levels of brain-derived neurotrophic factor (BDNF) of treated 3xTg-AD mice. In summary, our data support the idea that controlling the brain Zn2+ homeostasis may be beneficial in the treatment of AD

    Empirical Bayes models for multiple probe type microarrays at the probe level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When analyzing microarray data a primary objective is often to find differentially expressed genes. With empirical Bayes and penalized t-tests the sample variances are adjusted towards a global estimate, producing more stable results compared to ordinary t-tests. However, for Affymetrix type data a clear dependency between variability and intensity-level generally exists, even for logged intensities, most clearly for data at the probe level but also for probe-set summarizes such as the MAS5 expression index. As a consequence, adjustment towards a global estimate results in an intensity-level dependent false positive rate.</p> <p>Results</p> <p>We propose two new methods for finding differentially expressed genes, Probe level Locally moderated Weighted median-t (PLW) and Locally Moderated Weighted-t (LMW). Both methods use an empirical Bayes model taking the dependency between variability and intensity-level into account. A global covariance matrix is also used allowing for differing variances between arrays as well as array-to-array correlations. PLW is specially designed for Affymetrix type arrays (or other multiple-probe arrays). Instead of making inference on probe-set summaries, comparisons are made separately for each perfect-match probe and are then summarized into one score for the probe-set.</p> <p>Conclusion</p> <p>The proposed methods are compared to 14 existing methods using five spike-in data sets. For RMA and GCRMA processed data, PLW has the most accurate ranking of regulated genes in four out of the five data sets, and LMW consistently performs better than all examined moderated t-tests when used on RMA, GCRMA, and MAS5 expression indexes.</p

    Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever

    Get PDF
    Lassa fever (LF), caused by Lassa virus (LASV), is a viral hemorrhagic fever for which no approved vaccine or potent antiviral treatment is available. LF is a WHO priority disease and, together with rabies, a major health burden in West Africa. Here we present the development and characterization of an inactivated recombinant LASV and rabies vaccine candidate (LASSARAB) that expresses a codon-optimized LASV glycoprotein (coGPC) and is adjuvanted by a TLR-4 agonist (GLA-SE). LASSARAB elicits lasting humoral response against LASV and RABV in both mouse and guinea pig models, and it protects both guinea pigs and mice against LF. We also demonstrate a previously unexplored role for non-neutralizing LASV GPC-specific antibodies as a major mechanism of protection by LASSARAB against LF through antibody-dependent cellular functions. Overall, these findings demonstrate an effective inactivated LF vaccine and elucidate a novel humoral correlate of protection for LF.NIH grants R01 AI105204 to M.J.S., by the Jefferson Vaccine Center, and by the Fundação para a Ciência e Tecnologia (FCT) scholarship PD/BD/105847/2014 (to T.A.-M.). This work was also funded in part through the NIAID Division of Intramural Research and the NIAID Division of Clinical Research, Battelle Memorial Institute’s prime contract with the U.S. National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272200700016Iinfo:eu-repo/semantics/publishedVersio

    Evaluating methods for ranking differentially expressed genes applied to microArray quality control data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statistical methods for ranking differentially expressed genes (DEGs) from gene expression data should be evaluated with regard to high sensitivity, specificity, and reproducibility. In our previous studies, we evaluated eight gene ranking methods applied to only Affymetrix GeneChip data. A more general evaluation that also includes other microarray platforms, such as the Agilent or Illumina systems, is desirable for determining which methods are suitable for each platform and which method has better inter-platform reproducibility.</p> <p>Results</p> <p>We compared the eight gene ranking methods using the MicroArray Quality Control (MAQC) datasets produced by five manufacturers: Affymetrix, Applied Biosystems, Agilent, GE Healthcare, and Illumina. The area under the curve (AUC) was used as a measure for both sensitivity and specificity. Although the highest AUC values can vary with the definition of "true" DEGs, the best methods were, in most cases, either the weighted average difference (WAD), rank products (RP), or intensity-based moderated <it>t </it>statistic (ibmT). The percentages of overlapping genes (POGs) across different test sites were mainly evaluated as a measure for both intra- and inter-platform reproducibility. The POG values for WAD were the highest overall, irrespective of the choice of microarray platform. The high intra- and inter-platform reproducibility of WAD was also observed at a higher biological function level.</p> <p>Conclusion</p> <p>These results for the five microarray platforms were consistent with our previous ones based on 36 real experimental datasets measured using the Affymetrix platform. Thus, recommendations made using the MAQC benchmark data might be universally applicable.</p

    Tau-Mediated Nuclear Depletion and Cytoplasmic Accumulation of SFPQ in Alzheimer's and Pick's Disease

    Get PDF
    Tau dysfunction characterizes neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Here, we performed an unbiased SAGE (serial analysis of gene expression) of differentially expressed mRNAs in the amygdala of transgenic pR5 mice that express human tau carrying the P301L mutation previously identified in familial cases of FTLD. SAGE identified 29 deregulated transcripts including Sfpq that encodes a nuclear factor implicated in the splicing and regulation of gene expression. To assess the relevance for human disease we analyzed brains from AD, Pick's disease (PiD, a form of FTLD), and control cases. Strikingly, in AD and PiD, both dementias with a tau pathology, affected brain areas showed a virtually complete nuclear depletion of SFPQ in both neurons and astrocytes, along with cytoplasmic accumulation. Accordingly, neurons harboring either AD tangles or Pick bodies were also depleted of SFPQ. Immunoblot analysis of human entorhinal cortex samples revealed reduced SFPQ levels with advanced Braak stages suggesting that the SFPQ pathology may progress together with the tau pathology in AD. To determine a causal role for tau, we stably expressed both wild-type and P301L human tau in human SH-SY5Y neuroblastoma cells, an established cell culture model of tau pathology. The cells were differentiated by two independent methods, mitomycin C-mediated cell cycle arrest or neuronal differentiation with retinoic acid. Confocal microscopy revealed that SFPQ was confined to nuclei in non-transfected wild-type cells, whereas in wild-type and P301L tau over-expressing cells, irrespective of the differentiation method, it formed aggregates in the cytoplasm, suggesting that pathogenic tau drives SFPQ pathology in post-mitotic cells. Our findings add SFPQ to a growing list of transcription factors with an altered nucleo-cytoplasmic distribution under neurodegenerative conditions

    Modes of Aβ toxicity in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide
    corecore