19 research outputs found

    Ethylene signaling triggered by low concentrations of ascorbic acid regulates biomass accumulation in Arabidopsis thaliana

    Get PDF
    Ascorbic acid (AA) is a major redox buffer in plant cells. The role of ethylene in the redox signaling pathways that influence photosynthesis and growth was explored in two independent AA deficient Arabidopsis thaliana mutants (vtc2-1 and vtc2-4). Both mutants, which are defective in the AA biosynthesis gene GDP-L-galactose phosphorylase, produce higher amounts of ethylene than wt plants. In contrast to the wt, the inhibition of ethylene signaling increased leaf conductance, photosynthesis and dry weight in both vtc2 mutant lines. The AA-deficient mutants showed altered expression of genes encoding proteins involved in the synthesis/responses to phytohormones that control growth, particularly auxin, cytokinins, abscisic acid, brassinosterioids, ethylene and salicylic acid. These results demonstrate that AA deficiency modifies hormone signaling in plants, redox-ethylene interactions providing a regulatory node controlling shoot biomass accumulation

    Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl

    No full text
    We studied the effects of a polyhydroxylated spirostanic brassinosteroid analogue (BB-16) on the activities of antioxidant enzymes in rice seedlings grown in vitro in culture medium supplemented with NaCl. Seedlings were grown in medium with 75 mM NaCl and 0.001 or 0.01 mg dm(-3) BB-16 for 16 d or 3-d-old seedlings were exposed for 4 d to 0,0.001 or 0.01 mg dm(-3) BB-16 then further grown in medium with 75 mM NaCl without BB-16. Seedlings exposed to 0.01 mg dm(-3) BB-16 for 16 d showed significant increase in the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) and a slight increase in ascorbate peroxidase (APX). On the other hand, 4-d exposure to BB-16 only increased SOD and CAT activities at concentration 0.001 mg dm(-3). GR activity was not altered by this BB-16 treatment. These results indicated that BB-16, which is structurally modified in the lateral chain in relation to natural brassinosteroids, changes the activity of key antioxidant enzymes, which might confer tolerance to saline stress.471677
    corecore