801 research outputs found

    Research on nonlinear and quantum optics at the photonics and quantum information group of the University of Valladolid

    Get PDF
    We outline the main research lines in Nonlinear and Quantum Optics of the Group of Photonics and Quantum Information at the University of Valladolid. These works focus on Optical Solitons, Quantum Information using Photonic Technologies and the development of new materials for Nonlinar Optics. The investigations on optical solitons cover both temporal solitons in dispersion managed fiber links and nonparaxial spatial solitons as described by the Nonlinear Helmholtz Equation. Within the Quantum Information research lines of the group, the studies address new photonic schemes for quantum computation and the multiplexing of quantum data. The investigations of the group are, to a large extent, based on intensive and parallel computations. Some associated numerical techniques for the development of the activities described are briefly sketched

    Early colonisation of urban indoor carcasses by blow flies (Diptera: Calliphoridae): An experimental study from central Spain

    Get PDF
    Due to their ubiquity and synanthropy, blow flies (Diptera: Calliphoridae) are generally the first colonisers of cadavers and, therefore, frequently used to estimate a minimum post-mortem interval (minPMI). Whereas in outdoor situations blow flies are expected to locate and colonise exposed cadavers within hours or even minutes after death, it is usually assumed that the colonisation of a cadaver indoors might be delayed for an uncertain period of time. This uncertainty severely limits the informativity of minPMI estimates based on entomological evidence. Moreover, these limitations are emphasised by the lack of experimental data on insect colonisation of indoor carrion and by the fact that most of the forensic cases involving entomological evidence have been reported to occur indoors. In this study we investigate the early colonisation of pig carcasses placed indoors in a building located in the centre of an urban environment in central Spain. Three carcasses were placed in three equal rooms with a window half opened during five experimental trials: summer 2013, autumn 2013, winter 2014, spring 2014 and summer 2014. The species composition and their contribution to the carrion colonisation differed among seasons. Calliphora vicina Robineau–Desvoidy was the sole coloniser of carcasses in winter and colonised the carcasses within the first 24–48 h in every season, although Lucilia sericata (Meigen) was the first coloniser of most summer carcasses. On the other hand, Calliphora vomitoria (L.) and Chrysomya albiceps (Wiedemann) colonised the carcasses significantly later in spring and in spring and summer, respectively, with a delay of several days. In autumn, however, there were no significant differences in the colonisation times by C. vicina, L. sericata and Ch. albiceps. C. vicina and L. sericata showed a clear preference for ovipositing in the natural orifices of the carcasses, whereas Ch. albiceps oviposited more frequently on the trunk and legs.The attached document is the author’s final accepted/submitted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it

    Thickening of the pulmonary artery wall in acute intramural hematoma of the ascending aorta

    Get PDF
    BACKGROUND: The occurrence of pulmonary artery obstruction in the course of acute aortic dissection is an unusual complication. The mechanism implicated is the rupture of the outer layer of the aorta and the subsequent hemorrhage into the adventitia of the pulmonary artery that causes its wall thickening and, at times, produces extrinsic obstruction of the vessel. There are no reports of this complication in acute intramural hematoma. CASE PRESENTATION: An 87-year-old woman was admitted to the hospital in shock after having had severe chest pain followed by syncope. An urgent transesophageal echocardiogram revealed the presence of acute intramural hematoma, no evidence of aortic dissection, severe pericardial effusion with cardiac tamponade, and periaortic hematoma that involved the pulmonary artery generating circumferential wall thickening of its trunk and right branch with no evidence of flow obstruction. Urgent surgery was performed but the patient died in the operating room. The post mortem examination, in the operating room, confirmed that there was an extensive hematoma around the aorta and beneath the adventitial layer of the pulmonary artery, with no evidence of flow obstruction. CONCLUSION: This is the first time that this rare complication is reported in the scenario of acute intramural hematoma and with the transesophageal echocardiogram as the diagnostic tool

    Studying the Effect of Measured Solar Power on Evolutionary Multi-objective Prediction Intervals

    Get PDF
    This paper has been presented at: 19th Intelligent Data Engineering and Automated Learning (IDEAL 2018)While it is common to make point forecasts for solar energy generation, estimating the forecast uncertainty has received less attention. In this article, prediction intervals are computed within a multi-objective approach in order to obtain an optimal coverage/width tradeoff. In particular, it is studied whether using measured power as an another input, additionally to the meteorological forecast variables, is able to improve the properties of prediction intervals for short time horizons (up to three hours). Results show that they tend to be narrower (i.e. less uncertain), and the ratio between coverage and width is larger. The method has shown to obtain intervals with better properties than baseline Quantile Regression.This work has been funded by the Spanish Ministry of Science under contract ENE2014-56126-C2-2-R (AOPRIN-SOL project)

    Scutoids are a geometrical solution to three-dimensional packing of epithelia

    Get PDF
    As animals develop, tissue bending contributes to shape the organs into complex three-dimensional structures. However, the architecture and packing of curved epithelia remains largely unknown. Here we show by means of mathematical modelling that cells in bent epithelia can undergo intercalations along the apico-basal axis. This phenomenon forces cells to have different neighbours in their basal and apical surfaces. As a consequence, epithelial cells adopt a novel shape that we term “scutoid”. The detailed analysis of diverse tissues confirms that generation of apico-basal intercalations between cells is a common feature during morphogenesis. Using biophysical arguments, we propose that scutoids make possible the minimization of the tissue energy and stabilize three-dimensional packing. Hence, we conclude that scutoids are one of nature's solutions to achieve epithelial bending. Our findings pave the way to understand the three-dimensional organization of epithelial organs
    • …
    corecore