144 research outputs found

    Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion

    Get PDF
    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    The Day-to-Day Impact of Urogenital Aging: Perspectives from Racially/Ethnically Diverse Women

    Get PDF
    Urogenital symptoms affect up to half of women after menopause, but their impact on women’s day-to-day functioning and wellbeing is poorly understood. Postmenopausal women aged 45 to 80 years reporting urogenital dryness, soreness, itching, or pain during sex were recruited to participate in in-depth focus groups to discuss the impact of their symptoms. Focus groups were homogenous with respect to race/ethnicity and stratified by age (for White or Black women) or language (for Latina women). Transcripts of sessions were analyzed according to grounded theory. Six focus groups were conducted, involving 44 women (16 White, 14 Black, 14 Latina). Five domains of functioning and wellbeing affected by symptoms were identified: sexual functioning, everyday activities, emotional wellbeing, body image, and interpersonal relations. For some participants, symptoms primarily affected their ability to have and enjoy sex, as well as be responsive to their partners. For others, symptoms interfered with everyday activities, such as exercising, toileting, or sleeping. Participants regarded their symptoms as a sign that they were getting old or their body was deteriorating; women also associated symptoms with a loss of womanhood or sexuality. Additionally, participants reported feeling depressed, embarrassed, and frustrated about their symptoms, and expressed reluctance to discuss them with friends, family, or health care providers. Urogenital symptoms can have a marked impact on sexual functioning, everyday activities, emotional wellbeing, body image, and interpersonal relations after menopause. Clinicians may need to question women actively about these symptoms, as many are reluctant to seek help for this problem

    Differences in iNOS and Arginase Expression and Activity in the Macrophages of Rats Are Responsible for the Resistance against T. gondii Infection

    Get PDF
    Toxoplasma gondii infects humans and warm blooded animals causing devastating disease worldwide. It has long been a mystery as to why the peritoneal macrophages of rats are naturally resistant to T. gondii infection while those of mice are not. Here, we report that high expression levels and activity of inducible nitric oxide synthase (iNOS) and low levels of arginase-1 (Arg 1) activity in the peritoneal macrophages of rats are responsible for their resistance against T. gondii infection, due to high nitric oxide and low polyamines within these cells. The opposite situation was observed in the peritoneal macrophages of mice. This discovery of the opposing functions of iNOS and Arg 1 in rodent peritoneal macrophages may lead to a better understanding of the resistance mechanisms of mammals, particularly humans and livestock, against T. gondii and other intracellular pathogens

    Genomic Data Reveal Toxoplasma gondii Differentiation Mutants Are Also Impaired with Respect to Switching into a Novel Extracellular Tachyzoite State

    Get PDF
    Toxoplasma gondii pathogenesis includes the invasion of host cells by extracellular parasites, replication of intracellular tachyzoites, and differentiation to a latent bradyzoite stage. We present the analysis of seven novel T. gondii insertional mutants that do not undergo normal differentiation to bradyzoites. Microarray quantification of the variation in genome-wide RNA levels for each parasite line and times after induction allowed us to describe states in the normal differentiation process, to analyze mutant lines in the context of these states, and to identify genes that may have roles in initiating the transition from tachyzoite to bradyzoite. Gene expression patterns in wild-type parasites undergoing differentiation suggest a novel extracellular state within the tachyzoite stage. All mutant lines exhibit aberrant regulation of bradyzoite gene expression and notably some of the mutant lines appear to exhibit high proportions of the intracellular tachyzoite state regardless of whether they are intracellular or extracellular. In addition to the genes identified by the insertional mutagenesis screen, mixture model analysis allowed us to identify a small number of genes, in mutants, for which expression patterns could not be accounted for using the three parasite states – genes that may play a mechanistic role in switching from the tachyzoite to bradyzoite stage

    TgICMAP1 Is a Novel Microtubule Binding Protein in Toxoplasma gondii

    Get PDF
    The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction

    Combining Nitrous Oxide with Carbon Dioxide Decreases the Time to Loss of Consciousness during Euthanasia in Mice — Refinement of Animal Welfare?

    Get PDF
    Carbon dioxide (CO2) is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the “second gas” effect. We therefore evaluated the addition of Nitrous Oxide (N2O) to a rising CO2 concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N2O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%)+O2 (95%); Isoflurane (5%)+N2O (75%)+O2 (25%) and N2O (75%)+O2 (25%) with a total flow rate of 3l/min (into a 7l induction chamber). The addition of N2O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO2 (20% of the chamber volume.min−1); CO2+N2O (20 and 60% of the chamber volume.min−1 respectively); or CO2+Nitrogen (N2) (20 and 60% of the chamber volume.min−1). Arterial partial pressure (Pa) of O2 and CO2 were measured as well as blood pH and lactate. When compared to the gradually rising CO2 euthanasia, addition of a high concentration of N2O to CO2 lowered the time to loss of righting reflex by 10.3% (P<0.001), lead to a lower PaO2 (12.55±3.67 mmHg, P<0.001), a higher lactataemia (4.64±1.04 mmol.l−1, P = 0.026), without any behaviour indicative of distress. Nitrous oxide reduces the time of conscious exposure to gradually rising CO2 during euthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia
    corecore