1,729 research outputs found

    The effects of immediate vision on implicit hand maps

    Get PDF
    Perceiving the external spatial location of the limbs using position sense requires that immediate proprioceptive afferent signals be combined with a stored body model specifying the size and shape of the body. Longo and Haggard (Proc Natl Acad Sci USA 107:11727–11732, 2010) developed a method to isolate and measure this body model in the case of the hand in which participants judge the perceived location in external space of several landmarks on their occluded hand. The spatial layout of judgments of different landmarks is used to construct implicit hand maps, which can then be compared with actual hand shape. Studies using this paradigm have revealed that the body model of the hand is massively distorted, in a highly stereotyped way across individuals, with large underestimation of finger length and overestimation of hand width. Previous studies using this paradigm have allowed participants to see the locations of their judgments on the occluding board. Several previous studies have demonstrated that immediate vision, even when wholly non-informative, can alter processing of somatosensory signals and alter the reference frame in which they are localised. The present study therefore investigated whether immediate vision contributes to the distortions of implicit hand maps described previously. Participants judged the external spatial location of the tips and knuckles of their occluded left hand either while being able to see where they were pointing (as in previous studies) or while blindfolded. The characteristic distortions of implicit hand maps reported previously were clearly apparent in both conditions, demonstrating that the distortions are not an artefact of immediate vision. However, there were significant differences in the magnitude of distortions in the two conditions, suggesting that vision may modulate representations of body size and shape, even when entirely non-informative

    Understanding the Performance-Limiting Factors of Cs₂AgBiBr₆ Double-Perovskite Solar Cells

    Get PDF
    Double perovskites have recently emerged as possible alternatives to lead-based halide perovskites for photovoltaic applications. In particular, Understanding the Performance-Limiting Factors of Cs₂AgBiBr₆ Double-Perovskite Solar Cells has been the subject of several studies because of its environmental stability, low toxicity, and its promising optoelectronic features. Despite these encouraging features, the performances of solar cells based on this double perovskite are still low, suggesting severe limitations that need to be addressed. In this work we combine experimental and theoretical studies to show that the short electron diffusion length is one of the major causes for the limited performance of Cs₂AgBiBr₆ solar cells. Using EQE measurements on semitransparent Cs₂AgBiBr₆ solar cells we estimate the electron diffusion length to be only 30 nm and corroborated this value by terahertz spectroscopy. By using photothermal deflection spectroscopy and surface photovoltage measurements we correlate the limited electron diffusion length with a high density of electron traps. Our findings highlight important faults affecting this double perovskite, showing the challenges to overcome and hinting to a possible path to improve the efficiency of Cs₂AgBiBr₆ solar cells

    Visual detail about the body modulates tactile localisation biases

    Get PDF
    The localisation of tactile stimuli requires the integration of visual and somatosensory inputs within an internal representation of the body surface, and is prone to consistent bias. Joints may play a role in segmenting such internal body representations, and may therefore influence tactile localisation biases, although the nature of this influence remains unclear. Here, we investigate the relationship between conceptual knowledge of joint locations and tactile localisation biases on the hand. In one task, participants localised tactile stimuli applied to the dorsum of their hand. A distal localisation bias was observed in all participants, consistent with previous results. We also manipulated the availability of visual information during this task, to determine whether the absence of this information could account for the distal bias observed here and by Mancini and colleagues (2011). The observed distal bias increased in magnitude when visual information was restricted, without a corresponding decrease in precision. In a separate task, the same participants indicated, from memory, knuckle locations on a silhouette image of their hand. Analogous distal biases were also seen in the knuckle localisation task. The accuracy of conceptual joint knowledge was not correlated with tactile localisation bias magnitude, although a similarity in observed bias direction suggests that both tasks may rely on a common, higher-order body representation. These results also suggest that distortions of conceptual body representation may be more common in healthy individuals than previously thought

    Highly Absorbing Lead-Free Semiconductor Cu₂AgBiI₆ for Photovoltaic Applications from the Quaternary CuI-AgI-BiI₃ Phase Space

    Get PDF
    Since the emergence of lead halide perovskites for photovoltaic research, there has been mounting effort in the search for alternative compounds with improved or complementary physical, chemical, or optoelectronic properties. Here, we report the discovery of Cu_{2}AgBiI_{6}: a stable, inorganic, lead-free wide-band-gap semiconductor, well suited for use in lead-free tandem photovoltaics. We measure a very high absorption coefficient of 1.0 × 10^{5} cm^{–1} near the absorption onset, several times that of CH_{3}NH_{3}PbI_{3}. Solution-processed Cu2AgBiI6 thin films show a direct band gap of 2.06(1) eV, an exciton binding energy of 25 meV, a substantial charge-carrier mobility (1.7 cm^{2} V^{–1} s^{–1}), a long photoluminescence lifetime (33 ns), and a relatively small Stokes shift between absorption and emission. Crucially, we solve the structure of the first quaternary compound in the phase space among CuI, AgI and BiI_{3}. The structure includes both tetrahedral and octahedral species which are open to compositional tuning and chemical substitution to further enhance properties. Since the proposed double-perovskite Cs2AgBiI6 thin films have not been synthesized to date, Cu_{2}AgBiI_{6} is a valuable example of a stable Ag^{+}/Bi^{3+} octahedral motif in a close-packed iodide sublattice that is accessed via the enhanced chemical diversity of the quaternary phase space

    Comparison of the prognostic value of selected markers of the systemic inflammatory response in patients with colorectal cancer

    Get PDF
    There is increasing evidence that the presence of a systemic inflammatory response plays an important role in predicting survival in patients with colorectal cancer. However, it is not clear what components of the systemic inflammatory response best predict survival. The aim of the present study was to compare the prognostic value of an inflammation-based prognostic score (modified Glasgow Prognostic Score (Mgps) 0=C-reactive protein <10 mg l−1, 1=C-reactive protein >10 mg l−1, and 2=C-reactive protein >10 mg l−1 and albumin<35 g l−1) with that of components of the white cell count (neutrophils, lymphocytes, monocytes and platelets using standard thresholds) in patients with colorectal cancer. Two patient groups were studied: 149 patients who underwent potentially curative resection for colorectal cancer and 84 patients who had synchronous unresectable liver metastases. In those patients who underwent potentially curative resection the minimum follow-up was 36 months and 20 patients died of their cancer. On multivariate survival analysis only TNM stage (HR 3.75, 95% CI 1.54–9.17, P=0.004), monocyte count (HR 3.79, 95% CI 1.29–11.12, P=0.015) and mGPS (HR 2.21, 95% CI 1.11–4.41, P=0.024) were independently associated with cancer-specific survival. In patients with synchronous unresectable liver metastases the minimum follow-up was 6 months and 71 patients died of their cancer. On multivariate survival analysis only single liver metastasis >5 cm (HR 1.78, 95% CI 0.99–3.21, P=0.054), extra-hepatic disease (HR 2.09, 95% CI 1.05–4.17, P=0.036), chemotherapy treatment (HR 2.40, 95% CI 1.82–3.17, P<0.001) and mGPS (HR 1.44, 95% CI 1.01–2.04, P=0.043) were independently associated with cancer-specific survival. In summary, markers of the systemic inflammatory response are associated with poor outcome in patients with either primary operable or synchronous unresectable colorectal cancer. An acute-phase protein-based prognostic score, the mGPS, appears to be a superior predictor of survival compared with the cellular components of the systemic inflammatory response

    Tactile localization biases are modulated by gaze direction

    Get PDF
    Identifying the spatial location of touch on the skin surface is a fundamental function of our somatosensory system. Despite the fact that stimulation of even single mechanoreceptive afferent fibres is sufficient to produce clearly localised percepts, tactile localisation can be modulated also by higher-level processes such as body posture. This suggests that tactile events are coded using multiple representations using different coordinate systems. Recent reports provide evidence for systematic biases on tactile localisation task, which are thought to result from a supramodal representation of the skin surface. While the influence of non-informative vision of the body and gaze direction on tactile discrimination tasks has been extensively studied, their effects on tactile localisation tasks remain largely unexplored. To address this question, participants performed a tactile localization task on their left hand under different visual conditions by means of a mirror box; in the mirror condition a single stimulus was delivered on participants’ hand while the reflexion of the right hand was seen through the mirror; in the object condition participants looked at a box through the mirror, and in the right hand condition participants looked directly at their right hand. Participants reported the location of the tactile stimuli using a silhouette of a hand. Results showed a shift in the localization of the touches towards the tip of the fingers (distal bias) and the thumb (radial biases) across conditions. Critically, distal biases were reduced when participants looked towards the mirror compared to when they looked at their right hand suggesting that gaze direction reduces the typical proximo-distal biases in tactile localization. Moreover, vision of the hand modulates the internal configuration of points’ locations, by elongating it, in the radio-ulnar axis

    IGD Motifs, Which Are Required for Migration Stimulatory Activity of Fibronectin Type I Modules, Do Not Mediate Binding in Matrix Assembly

    Get PDF
    Picomolar concentrations of proteins comprising only the N-terminal 70-kDa region (70K) of fibronectin (FN) stimulate cell migration into collagen gels. The Ile-Gly-Asp (IGD) motifs in four of the nine FN type 1 (FNI) modules in 70K are important for such migratory stimulating activity. The 70K region mediates binding of nanomolar concentrations of intact FN to cell-surface sites where FN is assembled. Using baculovirus, we expressed wildtype 70K and 70K with Ile-to-Ala mutations in 3FNI and 5FNI; 7FNI and 9FNI; or 3FNI, 5FNI, 7FNI, and 9FNI. Wildtype 70K and 70K with Ile-to-Ala mutations were equally active in binding to assembly sites of FN-null fibroblasts. This finding indicates that IGD motifs do not mediate the interaction between 70K and the cell-surface that is important for FN assembly. Further, FN fragment N-3FNIII, which does not stimulate migration, binds to assembly sites on FN-null fibroblast. The Ile-to-Ala mutations had effects on the structure of FNI modules as evidenced by decreases in abilities of 70K with Ile-to-Ala mutations to bind to monoclonal antibody 5C3, which recognizes an epitope in 9FNI, or to bind to FUD, a polypeptide based on the F1 adhesin of Streptococcus pyogenes that interacts with 70K by the β-zipper mechanism. These results suggest that the picomolar interactions of 70K with cells that stimulate cell migration require different conformations of FNI modules than the nanomolar interactions required for assembly

    Effects of Dietary Restriction on Cancer Development and Progression

    Get PDF
    The effects of caloric restriction on tumor growth and progression are known for over a century. Indeed, fasting has been practiced for millennia, but just recently has emerged the protective role that it may exert toward cells. Fasting cycles are able to reprogram the cellular metabolism, by inducing protection against oxidative stress and prolonging cellular longevity. The reduction of calorie intake as well as short- or long-term fasting has been shown to protect against chronic and degenerative diseases, such as diabetes, cardiovascular pathologies, and cancer. In vitro and in vivo preclinical models showed that different restriction dietary regimens may be effective against cancer onset and progression, by enhancing therapy response and reducing its toxic side effects. Fasting-mediated beneficial effects seem to be due to the reduction of inflammatory response and downregulation of nutrient-related signaling pathways able to modulate cell proliferation and apoptosis. In this chapter, we will discuss the most significant studies present in literature regarding the molecular mechanisms by which dietary restriction may contribute to prevent cancer onset, reduce its progression, and positively affect the response to the treatments
    corecore