45 research outputs found

    Cost-effectiveness of oral alitretinoin in patients with severe chronic hand eczema - a long-term analysis from a Swiss perspective

    Get PDF
    BACKGROUND: The impact on patients suffering from chronic hand eczema (CHE) is enormous, as no licensed systemic treatment option with proven efficacy for CHE is available. Alitretinoin is a novel agent which showed high clinical efficacy in patients with severe, refractory CHE. We assessed the cost-effectiveness of alitretinoin for CHE patient treatment from a Swiss third party payer perspective. A further objective of this study was to determine the burden of disease in Switzerland. METHODS: A long-term Markov cohort simulation model was used to estimate direct medical costs (euro) and clinical effectiveness (quality adjusted life years, QALYs) of treating severe CHE patients with alitretinoin. Comparison was against the standard treatment of supportive care (optimised emollient therapy). Information on response rates were derived from a randomized controlled clinical trial. Costs were considered from the perspective of the Swiss health system. Swiss epidemiological data was derived from official Swiss Statistic institutions. RESULTS: Annual costs of alitretinoin treatment accounted for 2'212 euro. After a time horizon of 22.4 years, average remaining long-term costs accounted for 42'208 euro or 38'795 euro in the alitretinoin and the standard treatment arm, respectively. Compared with the standard therapy, the addition of alitretinoin yielded an average gain of 0.230 QALYs at the end of the simulation. Accordingly, the incremental cost-effectiveness ratio resulted in 14'816 euro/QALY gained. These results were robust to changes in key model assumptions. CONCLUSION: The therapy for CHE patients is currently insufficient. In our long-term model we identified the treatment with alitretinoin as a cost-effective alternative for the therapy of CHE patients in Switzerland

    Long-term follow-up with Granulocyte and Monocyte Apheresis re-treatment in patients with chronically active inflammatory bowel disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with IBD and chronic inflammation refractory to conventional therapy often demonstrate higher risk of serious complications. Combinations of immunosuppression and biological treatment as well as surgical intervention are often used in this patient group. Hence, there is need for additional treatment options. In this observational study, focused on re-treatment and long-term results, Granulocyte/Monocyte Adsorption (GMA, Adacolumn<sup>®</sup>) treatment has been investigated to study efficacy, safety and quality of life in IBD-patients with chronic activity.</p> <p>Methods</p> <p>Fifteen patients with ulcerative colitis and 25 patients with Crohn's disease, both groups with chronically active inflammation refractory to conventional medication were included in this observational study. The patients received 5-10 GMA sessions, and the clinical activity was assessed at baseline, after each completed course, and at week 10 and 20 by disease activity index, endoscopy and quality of life evaluation. Relapsed patients were re-treated by GMA in this follow-up study up to 58 months.</p> <p>Results</p> <p>Clinical response was seen in 85% and complete remission in 65% of the patients. Ten patients in the UC-group (66%) and 16 patients in the CD-group (64%) maintained clinical and endoscopic remission for an average of 14 months. Fourteen patients who relapsed after showing initial remission were re-treated with GMA and 13 (93%) went into a second remission. Following further relapses, all of seven patients were successfully re-treated for the third time, all of three patients for the fourth time and one for a fifth time.</p> <p>Conclusions</p> <p>IBD-patients with chronic inflammation despite conventional therapy seem to benefit from GMA. Re-treatment of relapsing remission patients seems to be effective.</p

    A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans

    Get PDF
    Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans

    Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Get PDF
    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis

    Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009

    Get PDF
    Insulin resistance is a hallmark of type 2 diabetes mellitus and is associated with a metabolic and cardiovascular cluster of disorders (dyslipidaemia, hypertension, obesity [especially visceral], glucose intolerance, endothelial dysfunction), each of which is an independent risk factor for cardiovascular disease (CVD). Multiple prospective studies have documented an association between insulin resistance and accelerated CVD in patients with type 2 diabetes, as well as in non-diabetic individuals. The molecular causes of insulin resistance, i.e. impaired insulin signalling through the phosphoinositol-3 kinase pathway with intact signalling through the mitogen-activated protein kinase pathway, are responsible for the impairment in insulin-stimulated glucose metabolism and contribute to the accelerated rate of CVD in type 2 diabetes patients. The current epidemic of diabetes is being driven by the obesity epidemic, which represents a state of tissue fat overload. Accumulation of toxic lipid metabolites (fatty acyl CoA, diacylglycerol, ceramide) in muscle, liver, adipocytes, beta cells and arterial tissues contributes to insulin resistance, beta cell dysfunction and accelerated atherosclerosis, respectively, in type 2 diabetes. Treatment with thiazolidinediones mobilises fat out of tissues, leading to enhanced insulin sensitivity, improved beta cell function and decreased atherogenesis. Insulin resistance and lipotoxicity represent the missing links (beyond the classical cardiovascular risk factors) that help explain the accelerated rate of CVD in type 2 diabetic patients

    ERrrr…Where are the Progenitors? Hormone Receptors and Mammary Cell Heterogeneity

    Get PDF
    The mammary epithelium is a highly heterogenous and dynamic tissue that includes a range of cell types with varying levels of proliferative capacity and differentiation potential, from stem to committed progenitor and mature cells. Generation of mature cells through expansion and specification of immature precursors is driven by hormonal and local stimuli. Intriguingly, although circulating hormones can be directly sensed only by a subset of mammary cells, they also regulate the behaviour of cells lacking their cognate receptors through paracrine mechanisms. Thus, mapping the hormonal signalling network on to the emerging mammary cell hierarchy appears to be a difficult task. Nevertheless, a first step towards a better understanding is the characterization of the hormone receptor expression pattern across individual cell types in the mammary epithelium. Here we review the most relevant findings on the cellular distribution of hormone receptors in the mammary gland, taking into account differences between mice and humans, the methods employed to assess receptor expression as well as the variety of approaches used to resolve the mammary cell heterogeneity

    HIV Among Indigenous peoples: A Review of the Literature on HIV-Related Behaviour Since the Beginning of the Epidemic

    Full text link
    corecore