210 research outputs found
Axion Protection from Flavor
The QCD axion fails to solve the strong CP problem unless all explicit PQ
violating, Planck-suppressed, dimension n<10 operators are forbidden or have
exponentially small coefficients. We show that all theories with a QCD axion
contain an irreducible source of explicit PQ violation which is proportional to
the determinant of the Yukawa interaction matrix of colored fermions.
Generically, this contribution is of low operator dimension and will
drastically destabilize the axion potential, so its suppression is a necessary
condition for solving the strong CP problem. We propose a mechanism whereby the
PQ symmetry is kept exact up to n=12 with the help of the very same flavor
symmetries which generate the hierarchical quark masses and mixings of the SM.
This "axion flavor protection" is straightforwardly realized in theories which
employ radiative fermion mass generation and grand unification. A universal
feature of this construction is that the heavy quark Yukawa couplings are
generated at the PQ breaking scale.Comment: 16 pages, 2 figure
On CP Asymmetries in Two-, Three- and Four-Body D Decays
Indirect and direct CP violations have been established in K_L and B_d
decays. They have been found in two-body decay channels -- with the exception
of K_L to pi^+ pi^- e^+ e^- transitions. Evidence for direct CP asymmetry has
just appeared in LHCb data on A_{CP}(D^0 to K^+ K^-) - A_{CP}(D^0 to pi^+ pi^-)
with 3.5 sigma significance. Manifestations of New Dynamics (ND) can appear in
CP asymmetries just below experimental bounds. We discuss D^{\pm}_{(s)},
D^0/\bar D^0 and D_L/D_S transitions to 2-, 3- and 4-body final states with a
comment on predictions for inclusive vs. exclusive CP asymmetries. In
particular we discuss T asymmetries in D to h_1 h_2 l^+ l^- in analogy with K_L
to pi^+ pi^- e^+ e^- transitions due to interference between M1, internal
bremsstrahlung and possible E1 amplitudes. Such an effect depends on the
strength of CP violation originating from the ND -- as discussed here for
Little Higgs Models with T parity and non-minimal Higgs sectors -- but also in
the interferences between these amplitudes even in the Standard Model (SM).
More general lessons can be learnt for T asymmetries in non-leptonic D decays
like D to h_1h_2 h_3 h_4. Such manifestations of ND can be tested at LHCb and
other Super-Flavour Factories like the projects at KEK near Tokyo and at Tor
Vergata/Frascati near Rome.Comment: 27 pages, 6 figures. Revised with current results from LHCb and HFAG
and further interpretation
Composite Dirac Neutrinos
We present a mechanism that naturally produces light Dirac neutrinos. The
basic idea is that the right-handed neutrinos are composite. Any realistic
composite model must involve `hidden flavor' chiral symmetries. In general some
of these symmetries may survive confinement, and in particular, one of them
manifests itself at low energy as an exact symmetry. Dirac neutrinos are
therefore produced. The neutrinos are naturally light due to compositeness. In
general, sterile states are present in the model, some of them can naturally be
warm dark matter candidates.Comment: 12 pages; Sec. IIC updated; minor corrections; published versio
Soft Spectrum in Yukawa-Gauge Mediation
We introduce a model independent parametrization for a subclass of gauge
mediated theories, which we refer to as Yukawa-gauge mediation. Within this
formalism we study the resulting soft masses in the visible spectrum. We find
general expressions for the gaugino and scalar masses. Under generic
conditions, the gaugino mass is screened, vanishing at first order in the SUSY
breaking scale.Comment: 22 pages, 4 figures; v2: minor corrections, published versio
Probing Quantum Geometry at LHC
We present an evidence, that the volumes of compactified spaces as well as
the areas of black hole horizons must be quantized in Planck units. This
quantization has phenomenological consequences, most dramatic being for micro
black holes in the theories with TeV scale gravity that can be produced at LHC.
We predict that black holes come in form of a discrete tower with well defined
spacing. Instead of thermal evaporation, they decay through the sequence of
spontaneous particle emissions, with each transition reducing the horizon area
by strictly integer number of Planck units. Quantization of the horizons can be
a crucial missing link by which the notion of the minimal length in gravity
eliminates physical singularities. In case when the remnants of the black holes
with the minimal possible area and mass of order few TeV are stable, they might
be good candidates for the cold dark matter in the Universe.Comment: 14 pages, Late
General Messenger Gauge Mediation
We discuss theories of gauge mediation in which the hidden sector consists of
two subsectors which are weakly coupled to each other. One sector is made up of
messengers and the other breaks supersymmetry. Each sector by itself may be
strongly coupled. We provide a unifying framework for such theories and discuss
their predictions in different settings. We show how this framework
incorporates all known models of messengers. In the case of weakly-coupled
messengers interacting with spurions through the superpotential, we prove that
the sfermion mass-squared is positive, and furthermore, that there is a lower
bound on the ratio of the sfermion mass to the gaugino mass.Comment: 37 pages; minor change
Supersymmetry in the shadow of photini
Additional neutral gauge fermions -- "photini" -- arise in string
compactifications as superpartners of U(1) gauge fields. Unlike their vector
counterparts, the photini can acquire weak-scale masses from soft SUSY breaking
and lead to observable signatures at the LHC through mass mixing with the bino.
In this work we investigate the collider consequences of adding photini to the
neutralino sector of the MSSM. Relatively large mixing of one or more photini
with the bino can lead to prompt decays of the lightest ordinary supersymmetric
particle; these extra cascades transfer most of the energy of SUSY decay chains
into Standard Model particles, diminishing the power of missing energy as an
experimental handle for signal discrimination. We demonstrate that the missing
energy in SUSY events with photini is reduced dramatically for supersymmetric
spectra with MSSM neutralinos near the weak scale, and study the effects on
limits set by the leading hadronic SUSY searches at ATLAS and CMS. We find that
in the presence of even one light photino the limits on squark masses from
hadronic searches can be reduced by 400 GeV, with comparable (though more
modest) reduction of gluino mass limits. We also consider potential discovery
channels such as dilepton and multilepton searches, which remain sensitive to
SUSY spectra with photini and can provide an unexpected route to the discovery
of supersymmetry. Although presented in the context of photini, our results
apply in general to theories in which additional light neutral fermions mix
with MSSM gauginos.Comment: 23 pages, 8 figures, references adde
A New Approach for Assessment of Mental Architecture: Repeated Tagging
A new approach to the study of a relatively neglected property of mental architecture—whether and when the already-processed elements are separated from the to-be-processed elements—is proposed. The process of numerical proportion discrimination between two sets of elements defined either by color or by orientation can be described as sampling with or without replacement (characterized by binomial or hypergeometric probability distributions respectively) depending on the possibility to tag an element once or repeatedly. All empirical psychometric functions were approximated by a theoretical model showing that the ability to keep track of the already tagged elements is not an inflexible part of the mental architecture but rather an individually variable strategy which also depends on conspicuity of perceptual attributes. Strong evidence is provided that in a considerable number of trials, observers tagged the same element repeatedly which can only be done serially at two separate time moments
The Status of GMSB After 1/fb at the LHC
We thoroughly investigate the current status of supersymmetry in light of the
latest searches at the LHC, using General Gauge Mediation (GGM) as a
well-motivated signature generator that leads to many different simplified
models. We consider all possible promptly-decaying NLSPs in GGM, and by
carefully reinterpreting the existing LHC searches, we derive limits on both
colored and electroweak SUSY production. Overall, the coverage of GGM parameter
space is quite good, but much discovery potential still remains even at 7 TeV.
We identify several regions of parameter space where the current searches are
the weakest, typically in models with electroweak production, third generation
sfermions or squeezed spectra, and we suggest how ATLAS and CMS might modify
their search strategies given the understanding of GMSB at 1/fb. In particular,
we propose the use of leptonic to suppress backgrounds.
Because we express our results in terms of simplified models, they have broader
applicability beyond the GGM framework, and give a global view of the current
LHC reach. Our results on 3rd generation squark NLSPs in particular can be
viewed as setting direct limits on naturalness.Comment: 44 pages, refs added, typos fixed, improved MC statistics in fig 1
R-parity Conservation via the Stueckelberg Mechanism: LHC and Dark Matter Signals
We investigate the connection between the conservation of R-parity in
supersymmetry and the Stueckelberg mechanism for the mass generation of the B-L
vector gauge boson. It is shown that with universal boundary conditions for
soft terms of sfermions in each family at the high scale and with the
Stueckelberg mechanism for generating mass for the B-L gauge boson present in
the theory, electric charge conservation guarantees the conservation of
R-parity in the minimal B-L extended supersymmetric standard model. We also
discuss non-minimal extensions. This includes extensions where the gauge
symmetries arise with an additional U(1)_{B-L} x U(1)_X, where U(1)_X is a
hidden sector gauge group. In this case the presence of the additional U(1)_X
allows for a Z' gauge boson mass with B-L interactions to lie in the sub-TeV
region overcoming the multi-TeV LEP constraints. The possible tests of the
models at colliders and in dark matter experiments are analyzed including
signals of a low mass Z' resonance and the production of spin zero bosons and
their decays into two photons. In this model two types of dark matter
candidates emerge which are Majorana and Dirac particles. Predictions are made
for a possible simultaneous observation of new physics events in dark matter
experiments and at the LHC.Comment: 38 pages, 7 fig
- …