115 research outputs found

    Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system

    Get PDF
    Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates

    Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system

    Get PDF
    Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates

    Transcriptome Profiling of Testis during Sexual Maturation Stages in Eriocheir sinensis Using Illumina Sequencing

    Get PDF
    The testis is a highly specialized tissue that plays dual roles in ensuring fertility by producing spermatozoa and hormones. Spermatogenesis is a complex process, resulting in the production of mature sperm from primordial germ cells. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. The gene expression pattern of testis in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been performed on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for testis of E. sinensis. In two runs, we produced 25,698,778 sequencing reads corresponding with 2.31 Gb total nucleotides. These reads were assembled into 342,753 contigs or 141,861 scaffold sequences, which identified 96,311 unigenes. Based on similarity searches with known proteins, 39,995 unigenes were annotated based on having a Blast hit in the non-redundant database or ESTscan results with a cut-off E-value above 10−5. This is the first report of a mitten crab transcriptome using high-throughput sequencing technology, and all these testes transcripts can help us understand the molecular mechanisms involved in spermatogenesis and testis maturation

    Prevalence of Abnormalities in Vestibular Function and Balance among HIV-Seropositive and HIV-Seronegative Women and Men

    Get PDF
    BACKGROUND: Most HIV-seropositive subjects in western countries receive highly active antiretroviral therapy (HAART). Although many aspects of their health have been studied, little is known about their vestibular and balance function. The goals of this study were to determine the prevalences of vestibular and balance impairments among HIV-seropositive and comparable seronegative men and women and to determine if those groups differed. METHODS: Standard screening tests of vestibular and balance function, including head thrusts, Dix-Hallpike maneuvers, and Romberg balance tests on compliant foam were performed during semiannual study visits of participants who were enrolled in the Baltimore and Washington, D. C. sites of the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study. RESULTS: No significant differences by HIV status were found on most tests, but HIV-seropositive subjects who were using HAART had a lower frequency of abnormal Dix-Hallpike nystagmus than HIV-seronegative subjects. A significant number of nonclassical Dix-Hallpike responses were found. Age was associated with Romberg scores on foam with eyes closed. Sex was not associated with any of the test scores. CONCLUSION: These findings suggest that HAART-treated HIV infection has no harmful association with vestibular function in community-dwelling, ambulatory men and women. The association with age was expected, but the lack of association with sex was unexpected. The presence of nonclassical Dix-Hallpike responses might be consistent with central nervous system lesions

    Proteomic Analysis of Fractionated Toxoplasma Oocysts Reveals Clues to Their Environmental Resistance

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite that is unique in its ability to infect a broad range of birds and mammals, including humans, leading to an extremely high worldwide prevalence and distribution. This work focuses on the environmentally resistant oocyst, which is the product of sexual replication in felids and an important source of human infection. Due to the difficulty in producing and working with oocysts, relatively little is known about how this stage is able to resist extreme environmental stresses and how they initiate a new infection, once ingested. To fill this gap, the proteome of the wall and sporocyst/sporozoite fractions of mature, sporulated oocysts were characterized using one-dimensional gel electrophoresis followed by LC-MS/MS on trypsin-digested peptides. A combined total of 1021 non-redundant T. gondii proteins were identified in the sporocyst/sporozoite fraction and 226 were identified in the oocyst wall fraction. Significantly, 172 of the identified proteins have not previously been identified in Toxoplasma proteomic studies. Among these are several of interest for their likely role in conferring environmental resistance including a family of small, tyrosine-rich proteins present in the oocyst wall fractions and late embryogenesis abundant domain-containing (LEA) proteins in the cytosolic fractions. The latter are known from other systems to be key to enabling survival against desiccation

    Persistent and polarised global actin flow is essential for directionality during cell migration

    Get PDF
    Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence
    • …
    corecore