47 research outputs found

    Elite Suppressors Harbor Low Levels of Integrated HIV DNA and High Levels of 2-LTR Circular HIV DNA Compared to HIV+ Patients On and Off HAART

    Get PDF
    Elite suppressors (ES) are a rare population of HIV-infected individuals that are capable of naturally controlling the infection without the use of highly active anti-retroviral therapy (HAART). Patients on HAART often achieve viral control to similar (undetectable) levels. Accurate and sensitive methods to measure viral burden are needed to elucidate important differences between these two patient populations in order to better understand their mechanisms of control. Viral burden quantification in ES patients has been limited to measurements of total DNA in PBMC, and estimates of Infectious Units per Million cells (IUPM). There appears to be no significant difference in the level of total HIV DNA between cells from ES patients and patients on HAART. However, recovering infectious virus from ES patient samples is much more difficult, suggesting their reservoir size should be much smaller than that in patients on HAART. Here we find that there is a significant difference in the level of integrated HIV DNA in ES patients compared to patients on HAART, providing an explanation for the previous results. When comparing the level of total to integrated HIV DNA in these samples we find ES patients have large excesses of unintegrated HIV DNA. To determine the composition of unintegrated HIV DNA in these samples, we measured circular 2-LTR HIV DNA forms and found ES patients frequently have high levels of 2-LTR circles in PBMC. We further show that these high levels of 2-LTR circles are not the result of inefficient integration in ES cells, since HIV integrates with similar efficiency in ES and normal donor cells. Our findings suggest that measuring integration provides a better surrogate of viral burden than total HIV DNA in ES patients. Moreover, they add significantly to our understanding of the mechanisms that allow viral control and reservoir maintenance in this unique patient population

    A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

    Get PDF
    Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4 + T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention

    Perturbing Dynamin Reveals Potent Effects on the Drosophila Circadian Clock

    Get PDF
    BACKGROUND: Transcriptional feedback loops are central to circadian clock function. However, the role of neural activity and membrane events in molecular rhythms in the fruit fly Drosophila is unclear. To address this question, we expressed a temperature-sensitive, dominant negative allele of the fly homolog of dynamin called shibire(ts1) (shi(ts1)), an active component in membrane vesicle scission. PRINCIPAL FINDINGS: Broad expression in clock cells resulted in unexpectedly long, robust periods (>28 hours) comparable to perturbation of core clock components, suggesting an unappreciated role of membrane dynamics in setting period. Expression in the pacemaker lateral ventral neurons (LNv) was necessary and sufficient for this effect. Manipulation of other endocytic components exacerbated shi(ts1)'s behavioral effects, suggesting its mechanism is specific to endocytic regulation. PKA overexpression rescued period effects suggesting shi(ts1) may downregulate PKA pathways. Levels of the clock component PERIOD were reduced in the shi(ts1)-expressing pacemaker small LNv of flies held at a fully restrictive temperature (29 degrees C). Less restrictive conditions (25 degrees C) delayed cycling proportional to observed behavioral changes. Levels of the neuropeptide PIGMENT-DISPERSING FACTOR (PDF), the only known LNv neurotransmitter, were also reduced, but PERIOD cycling was still delayed in flies lacking PDF, implicating a PDF-independent process. Further, shi(ts1) expression in the eye also results in reduced PER protein and per and vri transcript levels, suggesting that shibire-dependent signaling extends to peripheral clocks. The level of nuclear CLK, transcriptional activator of many core clock genes, is also reduced in shi(ts1) flies, and Clk overexpression suppresses the period-altering effects of shi(ts1). CONCLUSIONS: We propose that membrane protein turnover through endocytic regulation of PKA pathways modulates the core clock by altering CLK levels and/or activity. These results suggest an important role for membrane scission in setting circadian period

    The HIV Envelope but Not VSV Glycoprotein Is Capable of Mediating HIV Latent Infection of Resting CD4 T Cells

    Get PDF
    HIV fusion and entry into CD4 T cells are mediated by two receptors, CD4 and CXCR4. This receptor requirement can be abrogated by pseudotyping the virion with the vesicular stomatitis virus glycoprotein (VSV-G) that mediates viral entry through endocytosis. The VSV-G-pseudotyped HIV is highly infectious for transformed cells, although the virus circumvents the viral receptors and the actin cortex. In HIV infection, gp120 binding to the receptors also transduces signals. Recently, we demonstrated a unique requirement for CXCR4 signaling in HIV latent infection of blood resting CD4 T cells. Thus, we performed parallel studies in which the VSV-G-pseudotyped HIV was used to infect both transformed and resting T cells in the absence of coreceptor signaling. Our results indicate that in transformed T cells, the VSV-G-pseudotyping results in lower viral DNA synthesis but a higher rate of nuclear migration. However, in resting CD4 T cells, only the HIV envelope-mediated entry, but not the VSV-G-mediated endocytosis, can lead to viral DNA synthesis and nuclear migration. The viral particles entering through the endocytotic pathway were destroyed within 1–2 days. These results indicate that the VSV-G-mediated endocytotic pathway, although active in transformed cells, is defective and is not a pathway that can establish HIV latent infection of primary resting T cells. Our results highlight the importance of the genuine HIV envelope and its signaling capacity in the latent infection of blood resting T cells. These results also call for caution on the endocytotic entry model of HIV-1, and on data interpretation where the VSV-G-pseudotyped HIV was used for identifying HIV restriction factors in resting T cells

    The role of unintegrated DNA in HIV infection

    Get PDF
    Integration of the reverse transcribed viral genome into host chromatin is the hallmark of retroviral replication. Yet, during natural HIV infection, various unintegrated viral DNA forms exist in abundance. Though linear viral cDNA is the precursor to an integrated provirus, increasing evidence suggests that transcription and translation of unintegrated DNAs prior to integration may aid productive infection through the expression of early viral genes. Additionally, unintegrated DNA has the capacity to result in preintegration latency, or to be rescued and yield productive infection and so unintegrated DNA, in some circumstances, may be considered to be a viral reservoir. Recently, there has been interest in further defining the role and function of unintegrated viral DNAs, in part because the use of anti-HIV integrase inhibitors leads to an abundance of unintegrated DNA, but also because of the potential use of non-integrating lentiviral vectors in gene therapy and vaccines. There is now increased understanding that unintegrated viral DNA can either arise from, or be degraded through, interactions with host DNA repair enzymes that may represent a form of host antiviral defence. This review focuses on the role of unintegrated DNA in HIV infection and additionally considers the potential implications for antiviral therapy

    HIV latency and integration site placement in five cell-based models

    Get PDF
    BACKGROUND: HIV infection can be treated effectively with antiretroviral agents, but the persistence of a latent reservoir of integrated proviruses prevents eradication of HIV from infected individuals. The chromosomal environment of integrated proviruses has been proposed to influence HIV latency, but the determinants of transcriptional repression have not been fully clarified, and it is unclear whether the same molecular mechanisms drive latency in different cell culture models. RESULTS: Here we compare data from five different in vitro models of latency based on primary human T cells or a T cell line. Cells were infected in vitro and separated into fractions containing proviruses that were either expressed or silent/inducible, and integration site populations sequenced from each. We compared the locations of 6,252 expressed proviruses to those of 6,184 silent/inducible proviruses with respect to 140 forms of genomic annotation, many analyzed over chromosomal intervals of multiple lengths. A regularized logistic regression model linking proviral expression status to genomic features revealed no predictors of latency that performed better than chance, though several genomic features were significantly associated with proviral expression in individual models. Proviruses in the same chromosomal region did tend to share the same expressed or silent/inducible status if they were from the same cell culture model, but not if they were from different models. CONCLUSIONS: The silent/inducible phenotype appears to be associated with chromosomal position, but the molecular basis is not fully clarified and may differ among in vitro models of latency

    A new hypothesis for the cancer mechanism

    Full text link
    corecore