29 research outputs found

    Regulation of the DNA Damage Response and Gene Expression by the Dot1L Histone Methyltransferase and the 53Bp1 Tumour Suppressor

    Get PDF
    Dot1L, a histone methyltransferase that targets histone H3 lysine 79 (H3K79), has been implicated in gene regulation and the DNA damage response although its functions in these processes remain poorly defined.Using the chicken DT40 model system, we generated cells in which the Dot1L gene is disrupted to examine the function and focal recruitment of the 53Bp1 DNA damage response protein. Detailed kinetic and dose response assays demonstrate that, despite the absence of H3K79 methylation demonstrated by mass spectrometry, 53Bp1 focal recruitment is not compromised in these cells. We also describe, for the first time, the phenotypes of a cell line lacking both Dot1L and 53Bp1. Dot1L⁻/⁻ and wild type cells are equally resistant to ionising radiation, whereas 53Bp1⁻/⁻/Dot1L⁻/⁻ cells display a striking DNA damage resistance phenotype. Dot1L and 53Bp1 also affect the expression of many genes. Loss of Dot1L activity dramatically alters the mRNA levels of over 1200 genes involved in diverse biological functions. These results, combined with the previously reported list of differentially expressed genes in mouse ES cells knocked down for Dot1L, demonstrates surprising cell type and species conservation of Dot1L-dependent gene expression. In 53Bp1⁻/⁻ cells, over 300 genes, many with functions in immune responses and apoptosis, were differentially expressed. To date, this is the first global analysis of gene expression in a 53Bp1-deficient cell line.Taken together, our results uncover a negative role for Dot1L and H3K79 methylation in the DNA damage response in the absence of 53Bp1. They also enlighten the roles of Dot1L and 53Bp1 in gene expression and the control of DNA double-strand repair pathways in the context of chromatin

    Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement

    Get PDF
    This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)—the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)

    Platelet-rich plasma plus bioactive glass in the treatment of intra-bony defects: a study in dogs

    Get PDF
    OBJECTIVE: This study was designed to evaluate, histomorphometrically, the association of platelet-rich plasma (PRP) and bioactive glass (BG) in the treatment of periodontal intrabony defects. MATERIAL AND METHODS: Nine mongrel dogs were included in the study. Three-wall intrabony defects were surgically created at the mesial and distal aspect of first mandibular molar and exposed to plaque accumulation for 1 month. The defects were randomly assigned to the groups: control, BG, PRP, PRP+BG. Dogs were sacrificed 90 days after the surgeries. The histometric parameters evaluated were: length of sulcular and junctional epithelium, connective tissue adaptation, new cementum, new bone, defect extension and area of new bone filling the defect. RESULTS: A superior area of new bone was observed in PRP+BG and BG (13.80±2.32 mmÂČ and 15.63±2.64 mmÂČ, respectively) when compared to the other groups (8.19±1.46 mmÂČ and 8.81±1.47 mmÂČ for control and PRP, respectively). No statistically significant differences were observed in the remaining parameters. CONCLUSIONS: Within the limits of this study, it may be concluded that PRP failed to provide statistically significant improvements in the histometric parameters

    Platelet-rich plasma in the treatment of Class II furcation defects: a histometrical study in dogs

    Get PDF
    OBJECTIVE: This study was designed to evaluate the potential adjunctive benefits of platelet-rich plasma (PRP) when used with guided-tissue regeneration (GTR) and bioactive glass (BG) in the treatment of Class II furcation lesions. MATERIAL AND METHODS: Bilateral Class II furcation lesions were surgically created and allowed to become chronic in the mandibular third premolars of 9 dogs. The defects were randomly assigned to: A) GTR+BG and B) GTR+BG+PRP. Similar defects were created in the maxillary third premolars and received the same treatments after 45 days. Dogs were sacrificed 90 days after the first treatment. The histometric parameters evaluated were: connective tissue adaptation, new cementum, new bone, mineralized bone area, non-mineralized bone area, and residual BG particle area. RESULTS: Data analysis showed a superior length of new cementum and a greater mineralized bone area for group B in both periods (p<0.05). The non-mineralized bone area was greater in the control group (p<0.05) in both periods. CONCLUSION: Within the limits of this study, it can be concluded that the use of PRP in the treatment of Class II furcation defects may enhance the amount of new cementum and provide a more mineralized bone in a shorter period of time
    corecore