13 research outputs found

    Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees

    Get PDF
    Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species

    No full text
    Tree species interact with soil biota to impact soil organic carbon (C) pools, but it is unclear how this interaction is shaped by various ecological factors. We used multiple regression to describe how ~100 variables were related to soil organic C pools in a common garden experiment with 14 temperate tree species. Potential predictor variables included: (i) the abundance, chemical composition, and decomposition rates of leaf litter and fine roots, (ii) species richness and abundance of bacteria, fungi, and invertebrate animals in soil, and (iii) measures of soil acidity and texture. The amount of organic C in the organic horizon and upper 20 cm of mineral soil (i.e. the combined C pool) was strongly negatively correlated with earthworm abundance and strongly positively correlated with the abundance of aluminum, iron, and protons in mineral soils. After accounting for these factors, we identified additional correlations with soil biota and with litter traits. Rates of leaf litter decomposition, measured as litter mass loss, were negatively correlated with size of the combined soil organic C pool. Somewhat paradoxically, the combined soil organic C pool was also negatively related to the ratio of recalcitrant compounds to nitrogen in leaf litter. These apparent effects of litter traits probably arose because two independent components of litter “quality” were controlling different aspects of decomposition. Leaf litter mass loss rates were positively related with leaf litter calcium concentrations, reflecting greater utilization and depolymerization of calcium-rich leaf litter by earthworms and other soil biota, which presumably led to greater proportional losses of litter C as CO2 or dissolved organic C. The fraction of depolymerized and metabolized litter that is ultimately lost as CO2 is an inverse function of microbial C use efficiency, which increases with litter nutrient concentrations but decreases with concentrations of recalcitrant compounds (e.g. lignin); thus, high ratios of recalcitrant compounds to nitrogen in leaf litter likely caused a greater fraction of depolymerized litter to be lost as CO2. Existing conceptual models of soil C stabilization need to reconcile the effects of litter quality on these two potentially counteracting factors: rates of litter depolymerization and microbial C use efficiency
    corecore