14 research outputs found

    Mab21l2 Is Essential for Embryonic Heart and Liver Development

    Get PDF
    During mouse embryogenesis, proper formation of the heart and liver is especially important and is crucial for embryonic viability. In this study, we showed that Mab21l2 was expressed in the trabecular and compact myocardium, and that deletion of Mab21l2 resulted in a reduction of the trabecular myocardium and thinning of the compact myocardium. Mab21l2-deficient embryonic hearts had decreased expression of genes that regulate cell proliferation and apoptosis of cardiomyocytes. These results show that Mab21l2 functions during heart development by regulating the expression of such genes. Mab21l2 was also expressed in the septum transversum mesenchyme (STM). Epicardial progenitor cells are localized to the anterior surface of the STM (proepicardium), and proepicardial cells migrate onto the surface of the heart and form the epicardium, which plays an important role in heart development. The rest of the STM is essential for the growth and survival of hepatoblasts, which are bipotential progenitors for hepatocytes and cholangiocytes. Proepicardial cells in Mab21l2-deficient embryos had defects in cell proliferation, which led to a small proepicardium, in which α4 integrin expression, which is essential for the migration of proepicardial cells, was down-regulated, suggesting that defects occurred in its migration. In Mab21l2-deficient embryos, epicardial formation was defective, suggesting that Mab21l2 plays important roles in epicardial formation through the regulation of the cell proliferation of proepicardial cells and the migratory process of proepicardial cells. Mab21l2-deficient embryos also exhibited hypoplasia of the STM surrounding hepatoblasts and decreased hepatoblast proliferation with a resultant loss of defective morphogenesis of the liver. These findings demonstrate that Mab21l2 plays a crucial role in both heart and liver development through STM formation

    Modelling Survival and Mortality Risk to 15 Years of Age for a National Cohort of Children with Serious Congenital Heart Defects Diagnosed in Infancy

    Get PDF
    Congenital heart defects (CHDs) are a significant cause of death in infancy. Although contemporary management ensures that 80% of affected children reach adulthood, post-infant mortality and factors associated with death during childhood are not well-characterised. Using data from a UK-wide multicentre birth cohort of children with serious CHDs, we observed survival and investigated independent predictors of mortality up to age 15 years. Methods Data were extracted retrospectively from hospital records and death certificates of 3,897 children (57% boys) in a prospectively identified cohort, born 1992–1995 with CHDs requiring intervention or resulting in death before age one year. A discrete-time survival model accounted for time-varying predictors; hazards ratios were estimated for mortality. Incomplete data were addressed through multilevel multiple imputation. Findings By age 15 years, 932 children had died; 144 died without any procedure. Survival to one year was 79.8% (95% confidence intervals [CI] 78.5, 81.1%) and to 15 years was 71.7% (63.9, 73.4%), with variation by cardiac diagnosis. Importantly, 20% of cohort deaths occurred after age one year. Models using imputed data (including all children from birth) demonstrated higher mortality risk as independently associated with cardiac diagnosis, female sex, preterm birth, having additional cardiac defects or non-cardiac malformations. In models excluding children who had no procedure, additional predictors of higher mortality were younger age at first procedure, lower weight or height, longer cardiopulmonary bypass or circulatory arrest duration, and peri-procedural complications; non-cardiac malformations were no longer significant. Interpretation We confirm the high mortality risk associated with CHDs in the first year of life and demonstrate an important persisting risk of death throughout childhood. Late mortality may be underestimated by procedure-based audit focusing on shorter-term surgical outcomes. National monitoring systems should emphasise the importance of routinely capturing longer-term survival and exploring the mechanismsThis work was supported by a British Heart Foundation project grant (reference PG/02/065/13934). RLK was awarded an MRC Special Training Fellowship in Health of the Public and Health Services Research (reference G106/1083). HG and the Centre for Paediatric Epidemiology and Biostatistics benefited from Medical Research Council funding support to the MRC Centre of Epidemiology for Child Health (reference G04005546). Great Ormond St Hospital for Children NHS Trust and the UCL Institute of Child Health receives a proportion of funding from the Department of Health's NIHR Biomedical Research Centres schem

    Pulse oximetry screening: a review of diagnosing critical congenital heart disease in newborns

    No full text
    Melissa S Engel,1 Lazaros K Kochilas2 1Division of Neonatology, University of Minnesota, Minneapolis, MN, 2Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, USA Abstract: Congenital heart disease (CHD) is one of the most common birth defects, with an incidence of nine out of every 1,000 live births. The mortality of infants with CHD has decreased over the past 3 decades, but significant morbidity and mortality continue to occur if not diagnosed shortly after birth. Pulse oximetry was recommended as a screening tool to detect critical CHD in 2011 by the American Academy of Pediatrics and the American Heart Association. Pulse oximetry is a tool to measure oxygen saturation, and based on the presence of hypoxemia, many cardiac lesions are detected. Due to its ease of application to the patient, providing results in a timely manner and without the need for calibrating the sensor probe, pulse oximetry offers many advantages as a screening tool. However, pulse oximetry has also important limitations of which physicians should be aware to be able to assess the significance of the pulse oximetry measurement for a given patient. This review aims to highlight the benefits and shortcomings of pulse oximetry within the context of screening for critical CHD and suggests future avenues to cover existing gaps in current practices. Keywords: congenital heart disease, critical congenital heart disease, pulse oximetry, newborn, newborn screenin

    A familial inverted duplication/deletion of 2p25.1–25.3 provides new clues on the genesis of inverted duplications

    No full text
    We studied a family in which the same 10 Mb inverted duplication of 2p25.3–p25.1 segregates in two children and their father, all showing a trisomy phenotype. As FISH analysis demonstrated that the duplication was inverted, we suspected that a contiguous terminal deletion was also present, according to the classical inv dup del type of rearrangements. Although FISH with 2p and 2q subtelomeric probes gave normal results, 100 kb resolution array-CGH (aCGH) showed that, beside the duplication, a 273 kb deletion was also present. The presence of a single-copy region between the deleted and duplicated regions was further suspected through high-resolution aCGH analysis (∼20 kb), although only one informative spot having a normal log ratio was detected. The precise structure of the rearrangement was re-defined by real-time PCR and breakpoint cloning, demonstrating the presence of a 2680 bp single-copy sequence between deleted and duplicated regions and the involvement of a simple repeat with the potential for forming a non-B DNA structure. The rearrangement was not mediated by segmental duplications or short inverted repeats, and the double-strand break might have been repaired by non-homologous end joining or microhomology-mediated intrastrand repair. These data highlight the fact that concomitant deletions associated with inverted duplications are very likely to be more frequent than classical cytogenetic methods alone have been able to demonstrate. The phenotypic effects of the trisomy and of the terminal 2p deletion are discussed
    corecore