480 research outputs found

    Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    Get PDF
    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth

    Sodium Coupled Bicarbonate Influx Regulates Intracellular and Apical pH in Cultured Rat Caput Epididymal Epithelium

    Get PDF
    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium

    High rates of albuminuria but not of low eGFR in Urban Indigenous Australians: the DRUID Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indigenous Australians have an incidence of end stage kidney disease 8-10 times higher than non-Indigenous Australians. The majority of research studies concerning Indigenous Australians have been performed in rural or remote regions, whilst the majority of Indigenous Australians actually live in urban settings. We studied prevalence and factors associated with markers of kidney disease in an urban Indigenous Australian cohort, and compared results with those for the general Australian population.</p> <p>Methods</p> <p>860 Indigenous adult participants of the Darwin Region Urban Indigenous Diabetes (DRUID) Study were assessed for albuminuria (urine albumin-creatinine ratio≥2.5 mg/mmol males, ≥3.5 mg/mmol females) and low eGFR (estimated glomular filtration rate < 60 mls/min/1.73 m<sup>2</sup>). Associations between risk factors and kidney disease markers were explored. Comparison was made with the AusDiab cohort (n = 8,936 aged 25-64 years), representative of the general Australian adult population.</p> <p>Results</p> <p>A high prevalence of albuminuria (14.8%) was found in DRUID, whilst prevalence of low eGFR was 2.4%. Older age, higher HbA1c, hypertension, higher C-reactive protein and current smoking were independently associated with albuminuria on multiple regression. Low eGFR was independently associated with older age, hypertension, albuminuria and higher triglycerides. Compared to AusDiab participants, DRUID participants had a 3-fold higher adjusted risk of albuminuria but not of low eGFR.</p> <p>Conclusions</p> <p>Given the significant excess of ESKD observed in Indigenous versus non-Indigenous Australians, these findings could suggest either: albuminuria may be a better prognostic marker of kidney disease than low eGFR; that eGFR equations may be inaccurate in the Indigenous population; a less marked differential between Indigenous and non-Indigenous Australians for ESKD rates in urban compared to remote regions; or that differences in the pathophysiology of chronic kidney disease exist between Indigenous and non-Indigenous populations.</p

    Differential Regulation and Recovery of Intracellular Ca2+ in Cerebral and Small Mesenteric Arterial Smooth Muscle Cells of Simulated Microgravity Rat

    Get PDF
    BACKGROUND: The differential adaptations of cerebrovasculature and small mesenteric arteries could be one of critical factors in postspaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. We hypothesize that there is a differential regulation of intracellular Ca(2+) determined by the alterations in the functions of plasma membrane Ca(L) channels and ryanodine-sensitive Ca(2+) releases from sarcoplasmic reticulum (SR) in cerebral and small mesenteric vascular smooth muscle cells (VSMCs) of simulated microgravity rats, respectively. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats were subjected to 28-day hindlimb unweighting to simulate microgravity. In addition, tail-suspended rats were submitted to a recovery period of 3 or 7 days after removal of suspension. The function of Ca(L) channels was evaluated by patch clamp and Western blotting. The function of ryanodine-sensitive Ca(2+) releases in response to caffeine were assessed by a laser confocal microscope. Our results indicated that simulated microgravity increased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral VSMCs, whereas, simulated microgravity decreased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in small mesenteric VSMCs. In addition, 3- or 7-day recovery after removal of suspension could restore the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases to their control levels in cerebral and small mesenteric VSMCs, respectively. CONCLUSIONS: The differential regulation of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral and small mesenteric VSMCs may be responsible for the differential regulation of intracellular Ca(2+), which leads to the altered autoregulation of cerebral vasculature and the inability to adequately elevate peripheral vascular resistance in postspaceflight orthostatic intolerance

    The Immune Cell Composition in Barrett's Metaplastic Tissue Resembles That in Normal Duodenal Tissue

    Get PDF
    BACKGROUND AND OBJECTIVE: Barrett's esophagus (BE) is characterized by the transition of squamous epithelium into columnar epithelium with intestinal metaplasia. The increased number and types of immune cells in BE have been indicated to be due to a Th2-type inflammatory process. We tested the alternative hypothesis that the abundance of T-cells in BE is caused by a homing mechanism that is found in the duodenum. PATIENTS AND METHODS: Biopsies from BE and duodenal tissue from 30 BE patients and duodenal tissue from 18 controls were characterized by immmunohistochemistry for the presence of T-cells and eosinophils(eos). Ex vivo expanded T-cells were further phenotyped by multicolor analysis using flowcytometry. RESULTS: The high percentage of CD4(+)-T cells (69±3% (mean±SEM/n = 17, by flowcytometry)), measured by flowcytometry and immunohistochemistry, and the presence of non-activated eosinophils found in BE by immunohistochemical staining, were not different from that found in duodenal tissue. Expanded lymphocytes from these tissues had a similar phenotype, characterized by a comparable but low percentage of αE(CD103) positive CD4(+)cells (44±5% in BE, 43±4% in duodenum of BE and 34±7% in duodenum of controls) and a similar percentage of granzyme-B(+)CD8(+) cells(44±5% in BE, 33±6% in duodenum of BE and 36±7% in duodenum of controls). In addition, a similar percentage of α4β7(+) T-lymphocytes (63±5% in BE, 58±5% in duodenum of BE and 62±8% in duodenum of controls) was found. Finally, mRNA expression of the ligand for α4β7, MAdCAM-1, was also similar in BE and duodenal tissue. No evidence for a Th2-response was found as almost no IL-4(+)-T-cells were seen. CONCLUSION: The immune cell composition (lymphocytes and eosinophils) and expression of intestinal adhesion molecule MAdCAM-1 is similar in BE and duodenum. This supports the hypothesis that homing of lymphocytes to BE tissue is mainly caused by intestinal homing signals rather than to an active inflammatory response

    Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding

    Get PDF
    BACKGROUND: At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species. METHODOLOGY/PRINCIPAL FINDINGS: We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnS(UGA)-trnG(UCC), petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnS(UGA)-trnG(UCC), trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species. SIGNIFICANCE/CONCLUSIONS: Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or genera in phylogenetic analyses, and for DNA barcoding

    PAK1 Protein Expression in the Auditory Cortex of Schizophrenia Subjects

    Get PDF
    Deficits in auditory processing are among the best documented endophenotypes in schizophrenia, possibly due to loss of excitatory synaptic connections. Dendritic spines, the principal post-synaptic target of excitatory projections, are reduced in schizophrenia. p21-activated kinase 1 (PAK1) regulates both the actin cytoskeleton and dendritic spine density, and is a downstream effector of both kalirin and CDC42, both of which have altered expression in schizophrenia. This study sought to determine if there is decreased auditory cortex PAK1 protein expression in schizophrenia through the use of quantitative western blots of 25 schizophrenia subjects and matched controls. There was no significant change in PAK1 level detected in the schizophrenia subjects in our cohort. PAK1 protein levels within subject pairs correlated positively with prior measures of total kalirin protein in the same pairs. PAK1 level also correlated with levels of a marker of dendritic spines, spinophilin. These latter two findings suggest that the lack of change in PAK1 level in schizophrenia is not due to limited sensitivity of our assay to detect meaningful differences in PAK1 protein expression. Future studies are needed to evaluate whether alterations in PAK1 phosphorylation states, or alterations in protein expression of other members of the PAK family, are present in schizophrenia
    corecore