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Recovering low spatial frequencies 
in wavefront sensing based on intensity 
measurements
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Abstract 

The transport of intensity equation (TIE) offers a convenient method to retrieve the phase of a wave function from 
maps of the irradiance (images) recorded at different planes along the optic axis of an optical system. However, being 
a second-order partial differential equation, even for noise-free data a unique solution of the TIE requires boundary 
conditions to be specified which are generally not accessible experimentally, jeopardizing retrieval of the low-fre-
quency information in particular. Here we introduce an iterative algorithm which forgoes the need for explicit bound-
ary conditions and combines the well-known reciprocal space solution of the TIE with the charge-flipping algorithm 
that has originally been developed to solve the crystallographic phase problem in X-ray diffraction. Application of 
this algorithm to experimental data and comparison with conventionally used algorithms demonstrates an improved 
retrieval of the low spatial frequencies of the phase.
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Background
Wavefront sensing, i.e., the detection of relative phase 
shifts in propagating waves provides essential informa-
tion in imaging applications where the scattering pro-
cess affects the phase of the probing wave. Examples 
which highlight the importance of being able to detect 
phase shifts of waves passing through transparent 
objects include imaging of unstained cells under the opti-
cal microscope and imaging of soft matter (e.g., DNA, 
viruses, proteins and other macromolecules, polymers, 
etc.) in the transmission electron microscope (TEM). 
In 1953, Frits Zernike received the Nobel Prize in Phys-
ics for the development of phase contrast microscopy, 
a technique which allows part of the phase information 
carried by a wave to be converted into an amplitude sig-
nal, making it detectable as part of the intensity varia-
tions in the image. In 1971, Dennis Gabor received the 
Nobel Prize in Physics for developing the holographic 

principle [1], a technique by which the phase of a wave 
could be extracted by post-processing images. Later, 
iterative [2, 3] and deterministic [4–7] mathematical 
formulations and associated computer algorithms were 
developed by which both phase and amplitude of a wave 
could be recovered from intensity measurements at dif-
ferent planes along the optic axis, a so-called focal series.

One very popular approach toward wavefront recon-
struction from intensity measurements at different planes 
of focus is the transport of intensity equation (TIE) [5, 
8] which, due to its simple mathematical formulation 
and straightforward computational implementation, has 
attracted much attention in research communities as 
diverse as cold atom clouds [9], digital optical holography 
[10], and medical X-ray imaging [11].

Many algorithms such as the fast Fourier transform 
[6], the finite element method [12, 13], multigrid meth-
ods [14], a special symmetrization approach [15], each 
requiring Neumann, Dirichlet, or periodic boundary 
conditions have been proposed and applied for solving 
the TIE.

For wavefront reconstruction from focal series of 
images, the high spatial frequency components of the 
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phase are well-defined by the data, but the low spa-
tial frequency components are largely determined by 
the boundary conditions, which are usually unknown. 
Gureyev et al. [16, 17] and later Zuo et al. [18] introduced 
hard-edge apertures or, more generally non-uniform 
illumination during the experiment and thus physi-
cally enforced Neumann boundary conditions, allowing 
orthogonal series expansion-based approaches to be used 
to solve the TIE. Such an approach to make the bound-
ary conditions physically accessible may be feasible in 
some setups, but not generally. In the TEM, for example, 
the field of view is often so small that no aperture with 
perfectly abrupt edges exists, in particular not at atomic 
resolution.

There have been attempts to improve the recovery of 
low spatial frequency information in the context of the 
TIE by reformulating it as a total-variation optimization 
problem, [19, 20]; however, these approaches require a 
piecewise constant phase. Other approaches include the 
application of structured illumination [21]; the experi-
mentally much more complicated interferometric setup 
[22]; or prior knowledge of the measurement varia-
tion [23]. Therefore the problem of faithfully recovering 
low spatial frequency components of arbitrarily shaped 
phases remains, at least for a very large range of applica-
tions of wave front sensing.

In this work, we propose a simple iterative algorithm, 
gradient flipping (GF), with an emphasis on objects that 
are non-periodic and non-piecewise linear. GF imposes 
sparsity on the gradient of the phase by either driving a 
certain percentage of the phase gradient to zero, or forc-
ing all phase gradients below a certain positive threshold 
to zero. By combining the conventional Fourier method 
to solve the TIE with principles adapted from the charge-
flipping algorithm in crystallography, GF determines 
boundary conditions on the phase, while preserving con-
sistency with the higher frequencies of the experimental 
data.

In this research work, first the TIE and its conventional 
Fourier solution are introduced; then, the gradient-flip-
ping algorithm is presented and it is demonstrated with 
simulations that the GF algorithm retrieves the bounda-
ries and low spatial frequencies of two test objects. 
Furthermore, experimental results on a fly wing are pre-
sented in the experiment section; and, finally, conclusions 
are drawn.

The transport of intensity equation
The TIE is a second-order elliptical, non-separable, 
and inhomogeneous partial differential equation which 
relates the irradiance as well as the variation of the 

irradiance along the direction of propagation to a Lapla-
cian-like function of the phase:

where k denotes the wave number of the incident radia-
tion, and �r⊥ is a vector in the plane normal to the optic 
axis. ∂I(�r)

∂z  denotes the variation of intensity along the 
optical axis z. This quantity is most often approximated 
by the simple first-order finite difference approximation

Here �z is a small distance along the optic axis. If the 
image I(�r) is recorded in the exact focus of the imag-
ing system, then I(�r,+�z) and I(�r,−�z) are images 
recorded under over-focus and under-focus condition, 
respectively. Note that I(�r) has to be non-zero, for this 
equation to have a well-defined solution.

Expression (1) can be rewritten in the following form

where ∇−2 = ( �∇⊥ · �∇⊥)−1. A detailed discussion on the 
validity and range of applicability of Eq. (3) can be found 
in [24].

The nature of this equation implies that boundary con-
ditions must be applied to solve it. Assuming different 
boundary conditions will yield different solutions for the 
phase ϕ(�r⊥). A number of different algorithms have been 
developed to solve the TIE (e.g., [6, 15, 16, 25–29]), many 
of which are based on the very popular approach by 
Paganin and Nugent [6] which makes use of the fact that

where F  and F−1 are the two-dimensional forward and 
inverse Fourier transform, respectively, and �q⊥ is the two-
dimensional reciprocal space coordinate in the plane of 
f (�r⊥). At |q⊥| = 0 this expression diverges, so at that 
reciprocal space point one can simply multiply by zero 
instead. This is a physically legitimate procedure, since 
this defines the mean value of the phase—a physically 
undefined quantity—as zero.

This expression is straightforward to implement com-
putationally, since it makes the expression (3) fully deter-
ministic. However, using discrete Fourier transforms 
periodic boundary conditions are implicitly imposed. 
Also for iterative approaches, such as finite element [12, 
13] or multigrid [27] methods the boundary conditions 

(1)�∇⊥ ·
[

I(�r) �∇⊥ϕ(�r⊥)
]

= −k
∂I(�r)
∂z

(2)
∂I(�r)
∂z

≈ I(�r,+�z)− I(�r,−�z)

2�z

(3)ϕ(�r⊥) = −k∇−2 �∇⊥ ·
�∇⊥∇−2 ∂I(�r)

∂z

I(�r) ,

(4)∇−2f (�r⊥) = F
−1

{

|�q⊥|−2
F [f (�r⊥)]

}

,
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must be specified and are often chosen to either be peri-
odic, or of the Neumann type, or even both [27].

In the context of wavefront sensing, the investigated 
objects often have sparse phase gradients

This means that they contain areas where the phase is 
rather flat. Examples of such sparse objects include live 
cells in biological, biochemical, or biophysical applica-
tions, a large fraction of objects (e.g., nanoparticles) 
observed in the TEM, but also objects that extend well 
beyond the detected field of view, but have regions of 
constant optical thickness (e.g., the experimental exam-
ple shown below).

Gradient flipping
Gradient flipping (GF), is based on the charge-flipping 
(CF) algorithm which was originally developed for X-ray 
crystallography [30] where it is very effective in finding 
sparse solutions of the charge density consistent with 
experimental diffraction data.

GF pads the input data I(�r) with its mean value so that 
the padded image is twice as large along each of its two 
dimensions as the original image [31]. Also ∂I(�r)/∂z is 
padded to the same size, with zeros around its perimeter. 
The data in the padded area are then iteratively updated 
such that the phase gradient within the area corresponding 
to the measurement either has a certain percentage driven 
to zero, or has the gradient in all pixels the absolute value 
of which is below a certain positive threshold minimized.

The GF algorithm iterates between �G(�r) in Eq.  5 and 
the following expression for ∂I(�r)/∂z:

where gradient flipping is applied as

The parameter β is chosen slightly below 1, i.e., β = 0.97 
in order to improve convergence. Furthermore, δ defines 
a threshold between 5 and 20 % of the maximum value of 
� �G( �r⊥)�1, this proved to keep the balance between per-
turbation and algorithmic stability as suggested in [30].

At each iteration the left-hand side of (6) is updated 
with the experimental data dIexp.z ( �r⊥) by

(5)�G(�r) = �∇⊥ϕ(�r) = −k
�∇⊥∇−2 ∂I(�r)

∂z

I(�r) .

(6)D
(

�G′
)

= −�∇ · I(�r) �G′(�r)
k

,

(7)�G′( �r⊥) =


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�
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(8)dIz( �r⊥) =


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D
�
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�
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F−1
�
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�

D
�
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��
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�
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�

�
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where h is defined in reciprocal space as

The mask h acts as a Gaussian low-pass filter for the 
flipped gradient �G′(�r) with a characteristic length of 
2πRLP. This updating rule thus preserves the high spatial 
frequencies from the measurements, which are generally 
well-defined by the experiments, and lets the low-fre-
quency information, which is only weakly present in the 
measurements, be dictated by the gradient flipping.
dIz(�r) is initialized with the experimental values dIexp.z (�r) 

and zero-padded. Then it is fed into an iterative procedure 
which loops over the operations defined in expressions 
(3), (5), (7), and (8), feeding the updated dIz( �r⊥) again 
into expression (3). Convergence is reached when succes-
sive estimates of the phase are sufficiently similar. Figure 1 
shows a flowchart of the proposed algorithm.

(9)h(�q⊥) = exp
(

−R2
LP |�q⊥|−2

)

.

Compute           from          and
according to (3) and (4)

Compute                  form
according to (5)

Compute                  form
according to (7)

Compute                  from
and                      according to (8)

Converged?

compute
according to (8) and pad it with zero

Yes

No

Fig. 1  The flowchart of the proposed TIE-based algorithm
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Free parameters δ and RLP
A careful selection of the threshold parameter δ is a mat-
ter of great importance owing to its role as a trade-off 
between stabilization and perturbation of the algorithm. 
The threshold is defined as δ = ζσ , where σ is the stand-
ard deviation of the phase gradient and ζ is a constant. As 
shown in Fig. 2, despite the variation of σ during the ini-
tial iterations, it remains almost constant throughout the 
rest of the proposed iterative algorithm. This confirms 
the eligibility of σ to be a reasonable basis for the opti-
mum choice of δ. Following the suggestion of Oszlányi 
et al. [30], we chose the value of ζ between 1.0 and 1.2.

The characteristic length scale of the mask h in (8), RLP , 
is the second free parameter in the proposed algorithm 
and is determined entirely from the experimental data by 
setting it to the value that minimizes χ2 in (10). The χ2 
figure-of-merit is defined as,

(10)χ2 =
∑

x,y,z

[

I sim.(�r, z,RLP)− Iexp.(�r, z, )
]2

∑

x,y,z I
exp.(�r, z, ) ,

where the values of z being summed over all the under- 
and over-focus at which the experimental images have 
been recorded, and x and y span the area of those images. 
Furthermore, I sim.(�r⊥,RLP) are the images simulated 
from the phase ϕ(�r,RLP) that has been reconstructed 
with RLP and the amplitude A(�r) = √

I(�r, z = 0). 
Iexp.(�r, z) denotes the experimental data.

Simulations
In this section the performance of GF is demonstrated on 
simulations of two specimens: the projection of a cube 
and a L-shaped membrane.

Projected cube
Images of a test object are simulated for a wavelength of 
� = 500  nm, a defocus step of �f = 1  mm, a numerical 
aperture of 0.3, and a pixel size of 1 μm. Figure 3 shows 
an under-focused, and an over-focused image, as well as 
the finite difference estimate of the intensity variation 
along the optical axis determined from those. The images 
were padded by a factor close to 2, i.e., from 624 × 624 to 
1200× 1200 pixels.
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The threshold δ was set to 6.64 e−4, corresponding to a 
ζ of 1.2. From the graph in Fig. 4 it is apparent that χ2 is 
minimal for values of RLP greater than 17.77 μm and RLP 
is thus set to this value.

Figure  5b shows the retrieved phase by means of the 
proposed approach and Fig. 5a displays the original phase 
of the wave used to simulate the input data shown in 
Fig. 3. In Fig. 5c the boundaries of the original phase and 
its reconstruction are compared.

L‑shaped membrane
To further investigate the performance of the proposed 
algorithm for properly recovering also slowly varying 
phases, we constructed a phase object with the phase 
given by a continuous function that is not piecewise 

constant (Fig.  6a), namely the L-shaped membrane; 
this function can be obtained by the MATLAB expres-
sion ’membrane()’. Figure  6c shows the phase map 
retrieved by means of the FFT approach, which assumes 
periodic boundary conditions, while Fig.  6b shows the 
reconstruction obtained by the symmetrization method 
[15]. As clearly shown in Fig. 6d, the proposed algorithm 
yields a more accurate reconstruction than the aforemen-
tioned approaches. Furthermore, from Fig. 6d it is clear 
that GF retrieves the boundaries much better.

For this reconstruction the parameter δ has been set 
such that the number of pixels being flipped corre-
sponded to one quarter of the total number of the pixels 
in the field of view. And RLP has chosen to be 34.52 μm by 
minimizing χ2.
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Experiment
The GF algorithm is tested further using experimental 
data acquired from the simple optical setup shown in 

Fig. 7. The system comprised a laser with integrated col-
limator emitting green light at a wavelength of � = 520 
nm, two lenses with a focal length of f = 150 mm, an iris 
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diaphragm, and a for constructing the new 2048× 2048 
pixel CCD detector. The wing of a fly was used as a test 
object positioned at a distance r in front of the first lens, 
with f < r < 2f . The diaphragm was placed at the back 
focal plane of the first lens in order to limit the numerical 
aperture of the system to about 0.1. Images at the three 
focal planes z = −�z, z = 0, and z = +�z were acquired 
by translating the camera along the optic axis with a 
defocus step of �z = 1 mm.

All three images were dark-current corrected, and a 
gain reference image with no object in place was used 
for normalization. Since a difference in defocus leads to 
a difference in contrast between these three images and 
motivated by the fact that I(�r,+�z)+ I(�r,−�z) ≈ 2I(�r) 
the two defocused images I(�r,±�z) were registered 
to the focused image I(�r) by iterating the following two 
steps until convergence:

Step 1:	   �Shift I(�r,+�z) to the position of the maxi-
mum of the cross correlation of that image with 
2I(�r)− I(�r,−�z), and

Step 2:	� Shift I(�r,−�z) to the position of the maximum 
of the cross correlation of that image with 
2I(�r)− I(�r,+�z),

each time using the shifted defocused image from the 
previous iteration for constructing the new reference.

The under-focused and over-focused image, as well as 
dI

exp.
z ( �r⊥) computed according to (8) are shown in Fig. 8. 

Setting ζ = 1.2 converged to a δ value of 5.22× 10−5 . 
Furthermore, the minimum of χ2 occurs at RLP = 91.2 
μm (see Fig. 9). The algorithm was iterated for 20 epochs 
with the above-mentioned parameters.

Figure  10 shows phase maps ϕ( �r⊥) reconstructed by 
three different techniques: (a) the conventional FFT 
method applying (3) and (4), (b) the symmetrization mir-
ror padding approach proposed by Volkov et al. [15], and 
(c) the GF scheme proposed here. For both the conven-
tional FFT method (a), as well as the proposed GF algo-
rithm (c) the experimental data were padded as described 
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above to result in data of twice the original image 
dimensions.

All three phase maps shown in Fig.  10 are consistent 
with the experimental data, but the applied boundary 
conditions differ. The reconstructed phase maps shown 
in Fig.  10a, b are unphysical, because in both cases the 
phase shift inside the wing drops below the phase shift 
in the empty area. The FFT reconstruction shown in 
Fig. 10a also features a severe overall phase slope in the 
empty area which cannot be deemed physical.

The line profiles across the reconstructed phase maps 
show good agreement between the three different recon-
struction results for fine details, but they also highlight 
the large differences at low spatial frequencies.

Conclusion
In this work, we proposed a simple iterative algorithm, 
gradient flipping (GF), which imposes sparsity on the 
phase gradient by either driving a certain percentage of 
values to zero, or forcing all values below a certain posi-
tive threshold to zero. By combining the conventional 
Fourier method with these principles adapted from the 
charge-flipping algorithm in crystallography, GF deter-
mines boundary conditions on the phase, while pre-
serving consistency with the higher frequencies of the 
experimental data.

It was shown with simulations and experiments of 
non-periodic and non-piecewise linear objects that these 
boundary conditions contribute to GF’S much improved 
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lower spatial frequencies compared to that of the more 
conventional FFT method and symmetrization method.
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