19 research outputs found

    Novel method for combined linkage and genome-wide association analysis finds evidence of distinct genetic architecture for two subtypes of autism

    Get PDF
    The Autism Genome Project has assembled two large datasets originally designed for linkage analysis and genome-wide association analysis, respectively: 1,069 multiplex families genotyped on the Affymetrix 10 K platform, and 1,129 autism trios genotyped on the Illumina 1 M platform. We set out to exploit this unique pair of resources by analyzing the combined data with a novel statistical method, based on the PPL statistical framework, simultaneously searching for linkage and association to loci involved in autism spectrum disorders (ASD). Our analysis also allowed for potential differences in genetic architecture for ASD in the presence or absence of lower IQ, an important clinical indicator of ASD subtypes. We found strong evidence of multiple linked loci; however, association evidence implicating specific genes was low even under the linkage peaks. Distinct loci were found in the lower IQ families, and these families showed stronger and more numerous linkage peaks, while the normal IQ group yielded the strongest association evidence. It appears that presence/absence of lower IQ (LIQ) demarcates more genetically homogeneous subgroups of ASD patients, with not just different sets of loci acting in the two groups, but possibly distinct genetic architecture between them, such that the LIQ group involves more major gene effects (amenable to linkage mapping), while the normal IQ group potentially involves more common alleles with lower penetrances. The possibility of distinct genetic architecture across subtypes of ASD has implications for further research and perhaps for research approaches to other complex disorders as well

    Genetic polymorphisms of the RAS-cytokine pathway and chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) in children is irreversible. It is associated with renal failure progression and atherosclerotic cardiovascular (CV) abnormalities. Nearly 60% of children with CKD are affected since birth with congenital or inherited kidney disorders. Preliminary evidence primarily from adult CKD studies indicates common genetic risk factors for CKD and atherosclerotic CV disease. Although multiple physiologic pathways share common genes for CKD and CV disease, substantial evidence supports our attention to the renin angiotensin system (RAS) and the interlinked inflammatory cascade because they modulate the progressions of renal and CV disease. Gene polymorphisms in the RAS-cytokine pathway, through altered gene expression of inflammatory cytokines, are potential factors that modulate the rate of CKD progression and CV abnormalities in patients with CKD. For studying such hypotheses, the cooperative efforts among scientific groups and the availability of robust and affordable technologies to genotype thousands of single nucleotide polymorphisms (SNPs) across the genome make genome-wide association studies an attractive paradigm for studying polygenic diseases such as CKD. Although attractive, such studies should be interpreted carefully, with a fundamental understanding of their potential weaknesses. Nevertheless, whole-genome association studies for diabetic nephropathy and future studies pertaining to other types of CKD will offer further insight for the development of targeted interventions to treat CKD and associated atherosclerotic CV abnormalities in the pediatric CKD population

    Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to Elongator Protein Complex 4 (ELP4)

    No full text
    Rolandic epilepsy (RE) is the most common human epilepsy, affecting children between 3 and 12 years of age, boys more often than girls (3:2). Focal sharp waves in the centrotemporal area define the electroencephalographic (EEG) trait for the syndrome, are a feature of several related childhood epilepsies and are frequently observed in common developmental disorders (eg, speech dyspraxia, attention deficit hyperactivity disorder and developmental coordination disorder). Here we report the first genome-wide linkage scan in RE for the EEG trait, centrotemporal sharp waves (CTS), with genome-wide linkage of CTS to 11p13 (HLOD 4.30). Pure likelihood statistical analysis refined our linkage peak by fine mapping CTS to variants in Elongator Protein Complex 4 (ELP4) in two independent data sets; the strongest evidence was with rs986527 in intron 9 of ELP4, providing a likelihood ratio of 629:1 (P=0.0002) in favor of an association. Resequencing of ELP4 coding, flanking and promoter regions revealed no significant exonic polymorphisms. This is the first report of a gene implicated in a common focal epilepsy and the first human disease association of ELP4. ELP4 is a component of the Elongator complex, involved in transcription and tRNA modification. Elongator depletion results in the brain-specific downregulation of genes implicated in cell motility and migration. We hypothesize that a non-coding mutation in ELP4 impairs brain-specific Elongator-mediated interaction of genes implicated in brain development, resulting in susceptibility to seizures and neurodevelopmental disorders
    corecore