92 research outputs found

    Psychometric performance of the CAMPHOR and SF-36 in pulmonary hypertension

    Get PDF
    BACKGROUND: The Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) and the Medical Outcomes Study Short Form 36 (SF-36) are widely used to assess patient-reported outcome in individuals with pulmonary hypertension (PH). The aim of the study was to compare the psychometric properties of the two measures. METHODS: Participants were recruited from specialist PH centres in Australia and New Zealand. Participants completed the CAMPHOR and SF-36 at two time points two weeks apart. The SF-36 is a generic health status questionnaire consisting of 36 items split into 8 sections. The CAMPHOR is a PH-specific measure consisting of 3 scales; symptoms, activity limitations and needs-based QoL. The questionnaires were assessed for distributional properties (floor and ceiling effects), internal consistency (Cronbach's alpha), test-retest reliability and construct validity (scores by World Health Organisation functional classification). RESULTS: The sample comprised 65 participants (mean (SD) age = 57.2 (14.5) years; n(%) male = 14 (21.5%)). Most of the patients were in WHO class 2 (27.7%) and 3 (61.5%). High ceiling effects were observed for the SF-36 bodily pain, social functioning and role emotional domains. Test-retest reliability was poor for six of the eight SF-36 domains, indicating high levels of random measurement error. Three of the SF-36 domains did not distinguish between WHO classes. In contrast, all CAMPHOR scales exhibited good distributional properties, test retest reliability and distinguished between WHO functional classes. CONCLUSIONS: The CAMPHOR exhibited superior psychometric properties, compared with the SF-36, in the assessment of PH patient-reported outcome

    Massive-Scale RNA-Seq Analysis of Non Ribosomal Transcriptome in Human Trisomy 21

    Get PDF
    Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date, information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing. Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species, now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a plethora of non-polyadenilated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial genes, and novel extended untranslated regions for known genesβ€”possibly novel miRNA targets or regulatory sites for gene transcriptionβ€”were also identified in this study. Coupling the rRNA depletion of samples, followed by high-throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as other genetic disorders

    Comparative analysis of neural transcriptomes and functional implication of unannotated intronic expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcriptome and its regulation bridge the genome and the phenome. Recent RNA-seq studies unveiled complex transcriptomes with previously unknown transcripts and functions. To investigate the characteristics of neural transcriptomes and possible functions of previously unknown transcripts, we analyzed and compared nine recent RNA-seq datasets corresponding to tissues/organs ranging from stem cell, embryonic brain cortex to adult whole brain.</p> <p>Results</p> <p>We found that the neural and stem cell transcriptomes share global similarity in both gene and chromosomal expression, but are quite different from those of liver or muscle. We also found an unusually high level of unannotated expression in mouse embryonic brains. The intronic unannotated expression was found to be strongly associated with genes annotated for neurogenesis, axon guidance, negative regulation of transcription, and neural transmission. These functions are the hallmarks of the late embryonic stage cortex, and crucial for synaptogenesis and neural circuit formation.</p> <p>Conclusions</p> <p>Our results revealed unique global and local landscapes of neural transcriptomes. It also suggested potential functional roles for previously unknown transcripts actively expressed in the developing brain cortex. Our findings provide new insights into potentially novel genes, gene functions and regulatory mechanisms in early brain development.</p

    Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters

    Get PDF
    Transcription of long noncoding RNAs (lncRNAs) within gene regulatory elements can modulate gene activity in response to external stimuli, but the scope and functions of such activity are not known. Here we use an ultrahigh-density array that tiles the promoters of 56 cell-cycle genes to interrogate 108 samples representing diverse perturbations. We identify 216 transcribed regions that encode putative lncRNAs, many with RT-PCR–validated periodic expression during the cell cycle, show altered expression in human cancers and are regulated in expression by specific oncogenic stimuli, stem cell differentiation or DNA damage. DNA damage induces five lncRNAs from the CDKN1A promoter, and one such lncRNA, named PANDA, is induced in a p53-dependent manner. PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin. These findings suggest potentially widespread roles for promoter lncRNAs in cell-growth control.National Institutes of Health (U.S.)National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (NIAMS) (K08-AR054615))National Cancer Institute (U.S.) (NIH/(NCI) (R01-CA118750))National Cancer Institute (U.S.) (NIH/(NCI) R01-CA130795))Juvenile Diabetes Research Foundation InternationalAmerican Cancer SocietyHoward Hughes Medical Institute (Early career scientist)Stanford University (Graduate Fellowship)National Science Foundation (U.S.) (Graduate Research Fellowship)United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship

    Long non-coding RNAs and cancer: a new frontier of translational research?

    Get PDF
    Author manuscriptTiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.RS is supported as a fellow of the TALENTS Programme (7th R&D Framework Programme, Specific Programme: PEOPLEβ€”Marie Curie Actionsβ€”COFUND). MIA is supported as a PhD fellow of the FCT (Fundação para a CiΓͺncia e Tecnologia), Portugal. GAC is supported as a fellow by The University of Texas MD Anderson Cancer Center Research Trust, as a research scholar by The University of Texas System Regents, and by the Chronic Lymphocytic Leukemia Global Research Foundation. Work in GAC’s laboratory is supported in part by the NIH/ NCI (CA135444); a Department of Defense Breast Cancer Idea Award; Developmental Research Awards from the Breast Cancer, Ovarian Cancer, Brain Cancer, Multiple Myeloma and Leukemia Specialized Programs of Research Excellence (SPORE) grants from the National Institutes of Health; a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant; the Laura and John Arnold Foundation and the RGK Foundation

    The Genetic Signatures of Noncoding RNAs

    Get PDF
    The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non–protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses

    Within- and cross-language contributions of morphological awareness to word reading development in Chinese-English bilingual children

    Get PDF
    A growing body of cross-linguistic research has suggested that morphological awareness plays a key role in both L1 and L2 word reading among bilingual readers. However, little is known about the interaction and development of L1 and L2 morphological awareness in relation to word reading. We addressed this issue by evaluating the unique contributions of L1 Chinese and L2 English morphological awareness to word reading in both Chinese and English across Grades 2 (N = 150), 5 (N = 158), and 8 (N = 159) Hong Kong Chinese–English bilingual children. Children completed five tasks of Chinese morphological awareness which tapped for compounding awareness, homophone awareness, homographic awareness, semantic radical awareness, and affix awareness, and six English morphological judgment and analogy tasks that assessed morphological awareness at three levels: inflection, derivation, and compounding. English phonological awareness, Chinese and English vocabulary, and nonverbal ability were measured as controls. Word reading was assessed in both languages. Within-language analyses revealed that Chinese morphological awareness accounted for 27, 22, and 12% of unique variances in Chinese word reading above the control measures in Grades 2, 5, and 8 respectively. In contrast, English morphological awareness explained small but significant unique variances in English word reading, i.e., 4, 8, and 2%, across Grades 2, 5, and 8 respectively. Critically, there were cross-language influences: Chinese morphological awareness explained 4% of unique variance in English word reading in Grade 2 after controlling for IQ, English vocabulary, English phonological awareness, and English morphological awareness; English morphological awareness explained significant variances in Chinese word reading, i.e., 4, 3, and 4% in Grades 2, 5, and 8 respectively, after the relevant controls. These findings suggest a bi-directional cross-language transfer of morphological awareness to word reading in L1 Chinese and L2 English. However, the direction of its transfer may be constrained by some language-specific morphological features
    • …
    corecore