21 research outputs found

    Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cystic fibrosis (CF) is caused by mutations in the <it>CFTR </it>gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl<sup>- </sup>channel, would improve the intestinal phenotype in CF mice.</p> <p>Methods</p> <p><it>Cftr<sup>tm1UNC </sup></it>(CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 ÎŒg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16<it>S </it>gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR.</p> <p>Results</p> <p>Crypt width in control CF mice was 700% that of WT mice (<it>P </it>< 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (<it>P </it>= 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (<it>P </it>= 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (<it>P </it>= 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (<it>P </it>< 0.001) and CF mice (<it>P </it>< 0.001). Lubiprostone enhanced small intestinal transit in WT mice (<it>P </it>= 0.024) but not in CF mice (<it>P </it>= 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels.</p> <p>Conclusions</p> <p>These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion.</p

    The polymorphic variant rs1800734 influences methylation acquisition and allele-specific TFAP4 binding in the MLH1 promoter leading to differential mRNA expression

    Get PDF
    The raw data is available on Mendeley at https://data.mendeley.com/datasets/hfpbctm7tg/draft?a=1c91e494-cadc-4be0-a8ff-91d8736a28e7© The Author(s) 2019. Expression of the mismatch repair gene MutL homolog 1 (MLH1) is silenced in a clinically important subgroup of sporadic colorectal cancers. These cancers exhibit hypermutability with microsatellite instability (MSI) and differ from microsatellite-stable (MSS) colorectal cancers in both prognosis and response to therapies. Loss of MLH1 is usually due to epigenetic silencing with associated promoter methylation; coding somatic mutations rarely occur. Here we use the presence of a colorectal cancer (CRC) risk variant (rs1800734) within the MLH1 promoter to investigate the poorly understood mechanisms of MLH1 promoter methylation and loss of expression. We confirm the association of rs1800734 with MSI+ but not MSS cancer risk in our own data and by meta-analysis. Using sensitive allele-specific detection methods, we demonstrate that MLH1 is the target gene for rs1800734 mediated cancer risk. In normal colon tissue, small allele-specific differences exist only in MLH1 promoter methylation, but not gene expression. In contrast, allele-specific differences in both MLH1 methylation and expression are present in MSI+ cancers. We show that MLH1 transcriptional repression is dependent on DNA methylation and can be reversed by a methylation inhibitor. The rs1800734 allele influences the rate of methylation loss and amount of re-expression. The transcription factor TFAP4 binds to the rs1800734 region but with much weaker binding to the risk than the protective allele. TFAP4 binding is absent on both alleles when promoter methylation is present. Thus we propose that TFAP4 binding shields the protective rs1800734 allele of the MLH1 promoter from BRAF induced DNA methylation more effectively than the risk allele.Funding was provided by a Medical Research Council New Investigator Research Grant (MR/P000738/1). Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). D.T., N.S. and D.F. were supported by the EPIGENOMICS FLAGSHIP PROJECT- EPIGEN (project number 08934412) and by University of Insubria. M.T. and S.K. were funded by Ludwig Cancer Research
    corecore