12 research outputs found

    Time to positivity in blood cultures of adults with Streptococcus pneumoniae bacteremia

    Get PDF
    BACKGROUND: previous studies have established that bacterial blood concentration is related with clinical outcome. Time to positivity of blood cultures (TTP) has relationship with bacterial blood concentration and could be related with prognosis. As there is scarce information about the usefulness of TTP, we study the relationship of TTP with clinical parameters in patients with Streptococcus pneumoniae bacteremia. METHODS: TTP of all cases of Streptococcus pneumoniae bacteremia, detected between January 1995 and December 2004 using the BacT/Alert automated blood culture system in a teaching community hospital was analyzed. When multiple cultures were positive only the shortest TTP was selected for the analysis. RESULTS: in the study period 105 patients with Streptococcus pneumoniae bacteremia were detected. Median TTP was 14.1 hours (range 1.2 h to 127 h). Immunosuppressed patients (n = 5), patients with confusion (n = 19), severe sepsis or shock at the time of blood culture extraction (n = 12), those with a diagnosis of meningitis (n = 7) and those admitted to the ICU (n = 14) had lower TTP. Patients with TTP in the first quartile were more frequently hospitalized, admitted to the ICU, had meningitis, a non-pneumonic origin of the bacteremia, and a higher number of positive blood cultures than patients with TTP in the fourth quartile. None of the patients with TTP in the 90(th )decile had any of these factors associated with shorter TTP, and eight out of ten patients with TTP in the 10(th )decile had at least one of these factors. The number of positive blood cultures had an inverse correlation with TTP, suggesting a relationship of TTP with bacterial blood concentration. CONCLUSION: Our data support the relationship of TTP with several clinical parameters in patients with Streptococcus pneumoniae bacteremia, and its potential usefulness as a surrogate marker of outcome

    Chlamydiatrachomatis and placental inflammation in early preterm delivery

    Get PDF
    Chlamydiatrachomatis may infect the placenta and subsequently lead to preterm delivery. Our aim was to evaluate the relationship between the presence of Chlamydiatrachomatis and signs of placental inflammation in women who delivered at 32 weeks gestation or less. Setting: placental histology and clinical data were prospectively obtained from 304 women and newborns at the Erasmus MC-Sophia, Rotterdam, the Netherlands. C.trachomatis testing of placentas was done retrospectively using PCR. C.trachomatis was detected in 76 (25%) placentas. Histological evidence of placental inflammation was present in 123 (40%) placentas: in 41/76 (54%) placentas with C.trachomatis versus 82/228 (36%) placentas without C.trachomatis infection (OR 2.1, 95% CI 1.2–3.5). C.trachomatis infection correlated with the progression (P = 0.009) and intensity (P = 0.007) of materno-fetal placental inflammation. C.trachomatis DNA was frequently detected in the placenta of women with early preterm delivery, and was associated with histopathological signs of placental inflammation

    sodC-Based Real-Time PCR for Detection of Neisseria meningitidis

    Get PDF
    Real-time PCR (rt-PCR) is a widely used molecular method for detection of Neisseria meningitidis (Nm). Several rt-PCR assays for Nm target the capsule transport gene, ctrA. However, over 16% of meningococcal carriage isolates lack ctrA, rendering this target gene ineffective at identification of this sub-population of meningococcal isolates. The Cu-Zn superoxide dismutase gene, sodC, is found in Nm but not in other Neisseria species. To better identify Nm, regardless of capsule genotype or expression status, a sodC-based TaqMan rt-PCR assay was developed and validated. Standard curves revealed an average lower limit of detection of 73 genomes per reaction at cycle threshold (Ct) value of 35, with 100% average reaction efficiency and an average R2 of 0.9925. 99.7% (624/626) of Nm isolates tested were sodC-positive, with a range of average Ct values from 13.0 to 29.5. The mean sodC Ct value of these Nm isolates was 17.6±2.2 (±SD). Of the 626 Nm tested, 178 were nongroupable (NG) ctrA-negative Nm isolates, and 98.9% (176/178) of these were detected by sodC rt-PCR. The assay was 100% specific, with all 244 non-Nm isolates testing negative. Of 157 clinical specimens tested, sodC detected 25/157 Nm or 4 additional specimens compared to ctrA and 24 more than culture. Among 582 carriage specimens, sodC detected Nm in 1 more than ctrA and in 4 more than culture. This sodC rt-PCR assay is a highly sensitive and specific method for detection of Nm, especially in carriage studies where many meningococcal isolates lack capsule genes

    Microarray genomotyping of key experimental strains of Neisseria gonorrhoeae reveals gene complement diversity and five new neisserial genes associated with Minimal Mobile Elements

    Get PDF
    This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL - © 2004 Snyder et al; licensee BioMed Central Ltd.Background: There are four widely used experimental strains of N. gonorrhoeae, one of which has been sequenced and used as the basis for the construction of a multi-strain, mutli-species pan-neisserial microarray. Although the N. gonorrhoeae population structure is thought to be less diverse than N. meningitidis, there are some recognized gene-complement differences between strains, including the 59 genes of the Gonococcal Genetic Island. In this study we have investigated the three experimental strains that have not been sequenced to determine the extent and nature of their similarities and differences. Results: Using the Pan-Neisseria microarray, three commonly used gonococcal laboratory experimental strains were investigated (F62, MS11, & FA19). Genes absent from these strains, but present in strain FA1090, were assessed as is possible with typical microarrays. Due to the design of this microarray, additional genes were also identified. Differences were associated with Minimal Mobile Elements (MMEs) or known divergences. Genomotyping indicates the presence of genes previously only described in meningococci and shows the presence of the complete Gonococcal Genetic Island in N. gonorrhoeae strain FA19. Five new neisserial genes were identified through microarray genomotyping and subsequent sequencing of two divergent MMEs in N. gonorrhoeae strain MS11 and four MMEs in N. gonorrhoeae strain FA19. No differences were identified between N. gonorrhoeae strains FA1090 and F62, indicating that these strains are very similar. Conclusion: This study shows extensive similarity between the experimental strains, associated with a varying number of strain-specific genes. This provides a framework for those working with these strains to refer to the available gonococcal genome sequence, and is the first detailed comparison of gene complements between gonococcal strains.This stdy is supported by the Wellcome Advanced Research Fellowship, Wellcome Trust Project grant, and the Australian National Health and Medical Research council

    Systemic inflammation alters the inflammatory response in experimental lipopolysaccharide-induced meningitis

    No full text
    Experiments to evaluate the effect of the level and duration of endotoxaemia on the meningeal inflammatory response were performed in order to determine if systemic inflammation alters meningitis. Rabbits received either saline or Escherichia coli O111:B4 lipopolysacharide (LPS) intravenously at various doses (1, 3 or 10 µg) and times (−8, −2 or 0 h) before an intracisternal injection of 20 ng LPS. An intracisternal LPS injection together with saline intravenously produced a peak cerebrospinal fluid (CSF) tumour necrosis factor (TNF) level (95 ± 26 ng/ml) at 2 h and peak leucocyte level (5413 ± 764 cells/µl) at 4 h post-injection. Blood leucocytes were slightly elevated (12 000 ± 500/µl at 0 h; 16 900 ± 280/µl at 8 h) but plasma TNF was always undetectable (< 0·05 ng/ml). Conversely, intravenous injection of 3 or 10 µg LPS 2 h prior to intracisternal LPS injection impaired pleocytosis (peak < 220 cells/µl) and delayed (∼4 h) and reduced peak CSF TNF levels (3 µg LPS 5·0 ± 1·2 ng/ml; 10 µg LPS 6·9 ± 1·9; P < 0·05). Intravenous administration of 1 µg LPS was less inhibitory to CSF inflammation, but delayed onset (peak 1100 ± 60 leucocytes/µl CSF at 8 h; 6·3 ± 0·3 ng TNF/ml CSF at 4 h; both P < 0·05). Neutropenia nadirs were dependent on LPS dose (1 µg, 4500 ± 1700; 3 µg, 1900 ± 60; 10 µg, 1100 ± 100 all at 4 h post-intravenous dose). Peak plasma TNF levels were not dose-dependent (> 8 ng/ml), but plasma TNF was always detectable (> 0·2 ng/ml at 10 h post-intravenous dose). Intravenous LPS administration at 0 h also blocked pleocytosis, but the inhibitory effect was lost when administration at −8 h. In conclusion, the degree and duration of endotoxaemia affect the meningeal inflammatory response to LPS in experimental meningitis
    corecore