122 research outputs found

    Chronic Mineral Dysregulation Promotes Vascular Smooth Muscle Cell Adaptation and Extracellular Matrix Calcification

    Get PDF
    In chronic kidney disease (CKD) vascular calcification occurs in response to deranged calcium and phosphate metabolism and is characterized by vascular smooth muscle cell (VSMC) damage and attrition. To gain mechanistic insights into how calcium and phosphate mediate calcification, we used an ex vivo model of human vessel culture. Vessel rings from healthy control subjects did not accumulate calcium with long-term exposure to elevated calcium and/or phosphate. In contrast, vessel rings from patients with CKD accumulated calcium; calcium induced calcification more potently than phosphate (at equivalent calcium-phosphate product). Elevated phosphate increased alkaline phosphatase activity in CKD vessels, but inhibition of alkaline phosphatase with levamisole did not block calcification. Instead, calcification in CKD vessels most strongly associated with VSMC death resulting from calcium- and phosphate-induced apoptosis; treatment with a pan-caspase inhibitor ZVAD ameliorated calcification. Calcification in CKD vessels was also associated with increased deposition of VSMC-derived vesicles. Electron microscopy confirmed increased deposition of vesicles containing crystalline calcium and phosphate in the extracellular matrix of dialysis vessel rings. In contrast, vesicle deposition and calcification did not occur in normal vessel rings, but we observed extensive intracellular mitochondrial damage. Taken together, these data provide evidence that VSMCs undergo adaptive changes, including vesicle release, in response to dysregulated mineral metabolism. These adaptations may initially promote survival but ultimately culminate in VSMC apoptosis and overt calcification, especially with continued exposure to elevated calcium

    Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7

    Get PDF
    Menaquinone-7 (MK-7) is part of a family of vitamin K that are essential co-factors for the enzyme γ-glutamyl carboxylase, which is involved in the activation of γ-carboxy glutamate (Gla) proteins in the body. Gla proteins are important for normal blood coagulation and normality of bones and arteries. The objective of this study was to examine the potential toxicity of synthetic MK-7 in BomTac:NMRI mice and in Sprague-Dawley rats. In an acute oral toxicity test, mice were administered a single oral dose of 2000 mg/kg body weight (limit dose) and no toxicity was observed during the 14-day observation period. In the subchronic oral toxicity test in rats, animals were administered MK-7 for 90 days by gavage at the following doses: 0 (vehicle control, corn oil), 2.5, 5, and 10 mg/kg body weight/day. All generated data, including clinical observations, ophthalmology, clinical pathology, gross necropsy, and histopathology, revealed no compound-related toxicity in rats. Any statistically significant findings in clinical pathology parameters and/or organ weights noted were considered to be within normal biological variability. Therefore, under the conditions of this experiment, the median lethal dose (LD50) of MK-7 after a single oral administration in mice was determined to be greater than the limit dose level of 2000 mg/kg body weight. The no observed adverse effect level (NOAEL) of MK-7, when administered orally to rats for 90 days, was considered to be equal to 10 mg/kg body weight/day, the highest dose tested, based on lack of toxicity during the 90-day study period

    Vitamin K supplementation increases vitamin K tissue levels but fails to counteract ectopic calcification in a mouse model for pseudoxanthoma elasticum

    Get PDF
    Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder in which calcification of connective tissue leads to pathology in skin, eye and blood vessels. PXE is caused by mutations in ABCC6. High expression of this transporter in the basolateral hepatocyte membrane suggests that it secretes an as-yet elusive factor into the circulation which prevents ectopic calcification. Utilizing our Abcc6−/− mouse model for PXE, we tested the hypothesis that this factor is vitamin K (precursor) (Borst et al. 2008, Cell Cycle). For 3 months, Abcc6−/− and wild-type mice were put on diets containing either the minimum dose of vitamin K required for normal blood coagulation or a dose that was 100 times higher. Vitamin K was supplied as menaquinone-7 (MK-7). Ectopic calcification was monitored in vivo by monthly micro-CT scans of the snout, as the PXE mouse model develops a characteristic connective tissue mineralization at the base of the whiskers. In addition, calcification of kidney arteries was measured by histology. Results show that supplemental MK-7 had no effect on ectopic calcification in Abcc6−/− mice. MK-7 supplementation increased vitamin K levels (in skin, heart and brain) in wild-type and in Abcc6−/− mice. Vitamin K tissue levels did not depend on Abcc6 genotype. In conclusion, dietary MK-7 supplementation increased vitamin K tissue levels in the PXE mouse model but failed to counteract ectopic calcification. Hence, we obtained no support for the hypothesis that Abcc6 transports vitamin K and that PXE can be cured by increasing tissue levels of vitamin K

    Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling

    Get PDF
    Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio

    Mouse models for pseudoxanthoma elasticum: Genetic and dietary modulation of the ectopic mineralization phenotypes

    Get PDF
    Pseudoxanthoma elasticum (PXE), a heritable ectopic mineralization disorder, is caused by mutations in the ABCC6 gene. Null mice ( Abcc6 -/-) recapitulate the genetic, histopathologic and ultrastructural features of PXE, and they demonstrate early and progressive mineralization of vibrissae dermal sheath, which serves as a biomarker of the overall mineralization process. Recently, as part of a mouse aging study at The Jackson Laboratory, 31 inbred mouse strains were necropsied, and two of them, KK/HlJ and 129S1/SvImJ, were noted to have vibrissae dermal mineralization similar to Abcc6-/- mice. These two strains were shown to harbor a single nucleotide polymorphism (rs32756904) in the Abcc6 gene, which resulted in out-of-frame splicing and marked reduction in ABCC6 protein expression in the liver of these mice. The same polymorphism is present in two additional mouse strains, DBA/2J and C3H/HeJ, with similar reduction in Abcc6 protein levels, yet these mice did not demonstrate tissue mineralization when kept on standard rodent diet. However, all four mouse strains, when placed on experimental diet enriched in phosphate and low in magnesium, developed extensive ectopic mineralization. These results indicate that the genetic background of mice and the mineral composition of their diet can profoundly modulate the ectopic mineralization process predicated on mutations in the Abcc6 gene. These mice provide novel model systems to study the pathomechanisms and the reasons for strain background on phenotypic variability of PXE. © 2014 Li et al

    Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: implications for calcification-related chronic inflammatory diseases

    Get PDF
    Calcification-related chronic inflammatory diseases are multifactorial pathological processes, involving a complex interplay between inflammation and calcification events in a positive feed-back loop driving disease progression. Gla-rich protein (GRP) is a vitamin K dependent protein (VKDP) shown to function as a calcification inhibitor in cardiovascular and articular tissues, and proposed as an anti-inflammatory agent in chondrocytes and synoviocytes, acting as a new crosstalk factor between these two interconnected events in osteoarthritis. However, a possible function of GRP in the immune system has never been studied. Here we focused our investigation in the involvement of GRP in the cell inflammatory response mechanisms, using a combination of freshly isolated human leucocytes and undifferentiated/differentiated THP-1 cell line. Our results demonstrate that VKDPs such as GRP and matrix gla protein (MGP) are synthesized and gamma-carboxylated in the majority of human immune system cells either involved in innate or adaptive immune responses. Stimulation of THP-1 monocytes/macrophages with LPS or hydroxyapatite (HA) up-regulated GRP expression, and treatments with GRP or GRP-coated basic calcium phosphate crystals resulted in the down-regulation of mediators of inflammation and inflammatory cytokines, independently of the protein gamma-carboxylation status. Moreover, overexpression of GRP in THP-1 cells rescued the inflammation induced by LPS and HA, by down-regulation of the proinflammatory cytokines TNF alpha, IL-1 beta and NFkB. Interestingly, GRP was detected at protein and mRNA levels in extracellular vesicles released by macrophages, which may act as vehicles for extracellular trafficking and release. Our data indicate GRP as an endogenous mediator of inflammatory responses acting as an anti-inflammatory agent in monocytes/macrophages. We propose that in a context of chronic inflammation and calcification-related pathologies, GRP might act as a novel molecular mediator linking inflammation and calcification events, with potential therapeutic application.Portuguese Science and Technology Foundation (FCT) [PTDC/SAU-ORG/117266/2010, PTDC/BIM-MEC/1168/2012, UID/Multi/ 04326/2013]; FCT fellowships [SFRH/BPD/70277/2010, SFRH/BD/111824/2015
    • …
    corecore