18 research outputs found

    Isolation of Trypanosoma brucei gambiense from Cured and Relapsed Sleeping Sickness Patients and Adaptation to Laboratory Mice

    Get PDF
    Human African trypanosomiasis, or sleeping sickness, is still a major public health problem in central Africa. Melarsoprol is widely used for treatment of patients where the parasite has already reached the brain. In some regions in Angola, Sudan, Uganda and Democratic Republic of the Congo, up to half of the patients cannot be cured with melarsoprol. From previous investigations it is not yet clear what causes these high relapse rates. Therefore we aimed to establish a parasite collection isolated from cured as well as relapsed patients for downstream comparative drug sensitivity profiling. From 360 sleeping sickness patients, blood and cerebrospinal fluid (CSF) was collected before treatment and along the prescribed 24 months follow-up. Blood and CSF were inoculated in thicket rats (Grammomys surdaster), Natal multimammate mice (Mastomys natalensis) and immunodeficient laboratory mice (Mus musculus). Thus, we established a unique collection of Trypanosoma brucei gambiense type I parasites, isolated in the same disease focus and within a limited period, including 12 matched strains isolated from the same patient before treatment and after relapse. This collection is now available for genotypic and phenotypic characterisation to investigate the mechanism behind abnormally high treatment failure rates in Mbuji-Mayi, Democratic Republic of the Congo

    TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways

    Get PDF
    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin

    Differential expression and function of breast regression protein 39 (BRP-39) in murine models of subacute cigarette smoke exposure and allergic airway inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the presence of the chitinase-like molecule YKL40 has been reported in COPD and asthma, its relevance to inflammatory processes elicited by cigarette smoke and common environmental allergens, such as house dust mite (HDM), is not well understood. The objective of the current study was to assess expression and function of BRP-39, the murine equivalent of YKL40 in a murine model of cigarette smoke-induced inflammation and contrast expression and function to a model of HDM-induced allergic airway inflammation.</p> <p>Methods</p> <p>CD1, C57BL/6, and BALB/c mice were room air- or cigarette smoke-exposed for 4 days in a whole-body exposure system. In separate experiments, BALB/c mice were challenged with HDM extract once a day for 10 days. BRP-39 was assessed by ELISA and immunohistochemistry. IL-13, IL-1R1, IL-18, and BRP-39 knock out (KO) mice were utilized to assess the mechanism and relevance of BRP-39 in cigarette smoke- and HDM-induced airway inflammation.</p> <p>Results</p> <p>Cigarette smoke exposure elicited a robust induction of BRP-39 but not the catalytically active chitinase, AMCase, in lung epithelial cells and alveolar macrophages of all mouse strains tested. Both BRP-39 and AMCase were increased in lung tissue after HDM exposure. Examining smoke-exposed IL-1R1, IL-18, and IL-13 deficient mice, BRP-39 induction was found to be IL-1 and not IL-18 or IL-13 dependent, while induction of BRP-39 by HDM was independent of IL-1 and IL-13. Despite the importance of BRP-39 in cellular inflammation in HDM-induced airway inflammation, BRP-39 was found to be redundant for cigarette smoke-induced airway inflammation and the adjuvant properties of cigarette smoke.</p> <p>Conclusions</p> <p>These data highlight the contrast between the importance of BRP-39 in HDM- and cigarette smoke-induced inflammation. While functionally important in HDM-induced inflammation, BRP-39 is a biomarker of cigarette smoke induced inflammation which is the byproduct of an IL-1 inflammatory pathway.</p

    House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells

    No full text
    Barrier epithelial cells and airway dendritic cells (DCs) make up the first line of defense against inhaled substances such as house dust mite (HDM) allergen and endotoxin (lipopolysaccharide, LPS). We hypothesized that these cells need to communicate with each other to cause allergic disease. We show in irradiated chimeric mice that Toll-like receptor 4 (TLR4) expression on radioresistant lung structural cells, but not on DCs, is necessary and sufficient for DC activation in the lung and for priming of effector T helper responses to HDM. TLR4 triggering on structural cells caused production of the innate proallergic cytokines thymic stromal lymphopoietin, granulocyte-macrophage colony-stimulating factor, interleukin-25 and interleukin-33. The absence of TLR4 on structural cells, but not on hematopoietic cells, abolished HDM-driven allergic airway inflammation. Finally, inhalation of a TLR4 antagonist to target exposed epithelial cells suppressed the salient features of asthma, including bronchial hyperreactivity. Our data identify an innate immune function of airway epithelial cells that drives allergic inflammation via activation of mucosal DC

    Viral infections and atopy in asthma pathogenesis: New rationales for asthma prevention and treatment

    No full text
    Prospective birth cohort studies tracking asthma initiation and consolidation in community cohorts have identified viral infections occurring against a background of allergic sensitization to aeroallergens as a uniquely potent risk factor for the expression of acute severe asthma-like symptoms and for the ensuing development of asthma that can persist through childhood and into adulthood. A combination of recent experimental and human studies have suggested that underlying this bipartite process are a series of interactions between antiviral and atopic inflammatory pathways that are mediated by local activation of myeloid cell populations in the airway mucosa and the parallel programming and recruitment of their replacements from bone marrow. Targeting key components of these pathways at the appropriate stages of asthma provides new opportunities for the treatment of established asthma but, more crucially, for primary and secondary prevention of asthma during childhood
    corecore