14 research outputs found

    Particulate Fillers in Thermoplastics

    Get PDF
    The characteristics of particulate filled thermoplastics are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape, while the main matrix property is stiffness. Segregation, aggregation and the orientation of anisotropic particles determine structure. Interfacial interactions lead to the formation of a stiff interphase considerably influencing properties. Interactions are changed by surface modification, which must be always system specific and selected according to its goal. Under the effect of external load inhomogeneous stress distribution develops around heterogeneities, which initiate local micromechanical deformation processes determining the macroscopic properties of the composites

    Characterization Methods for Chitosan-Based Nanomaterials

    No full text
    Chitosan-based nanomaterials have shown rapid pace to occupy indispensable role in biological sciences due to their unique properties and functionalities distinct from bulk chitosan. This new family of nanomaterials is being developed for various applications like smart delivery of bioactive compounds, enhancing plant growth, boosting immune response, and controlling plant diseases. With an exponential growth in interest on these nanomaterials, development of measurement protocols for reliable, accurate, and consistent characterization is very important. With the advancement of characterization techniques, the physicochemical properties of chitosan-based nanomaterials such as size, shape, interactions among constituent components, surface charge, elemental composition, purity, crystallinity, surface morphology, and internal structure can be accurately determined. Further, newer analytical techniques allow the analysis of nanomaterials in their chemically unmodified and fully hydrated states. Characterization of nanomaterials provides progression in understanding, method optimization, and their applications with sustainability and accuracy. In this chapter, we have described some of the important characterization techniques for chitosan-based nanomaterials
    corecore