26 research outputs found

    Calcium Sulfate and Platelet-Rich Plasma make a novel osteoinductive biomaterial for bone regeneration

    Get PDF
    BACKGROUND: With the present study we introduce a novel and simple biomaterial able to induce regeneration of bone. We theorized that nourishing a bone defect with calcium and with a large amount of activated platelets may initiate a series of biological processes that culminate in bone regeneration. Thus, we engineered CS-Platelet, a biomaterial based on the combination of Calcium Sulfate and Platelet-Rich Plasma in which Calcium Sulfate also acts as an activator of the platelets, therefore avoiding the need to activate the platelets with an agonist. METHODS: First, we tested CS-Platelet in heterotopic (muscle) and orthotopic (bone) bone regeneration bioassays. We then utilized CS-Platelet in a variety of dental and craniofacial clinical cases, where regeneration of bone was needed. RESULTS: The heterotopic bioassay showed formation of bone within the muscular tissue at the site of the implantation of CS-Platelet. Results of a quantitative orthotopic bioassay based on the rat calvaria critical size defect showed that only CS-Platelet and recombinant human BMP2 were able to induce a significant regeneration of bone. A non-human primate orthotopic bioassay also showed that CS-Platelet is completely resorbable. In all human clinical cases where CS-Platelet was used, a complete bone repair was achieved. CONCLUSION: This study showed that CS-Platelet is a novel biomaterial able to induce formation of bone in heterotopic and orthotopic sites, in orthotopic critical size bone defects, and in various clinical situations. The discovery of CS-Platelet may represent a cost-effective breakthrough in bone regenerative therapy and an alternative or an adjuvant to the current treatments

    From geography to genes: evolutionary perspectives on salinity tolerance in the brackish water barnacle Balanus improvisus

    Get PDF
    How species respond to changes in their environment is a fundamental question in biology. This has become an increasingly important issue as anthropogenic effects of climate change and biological invasions have major impacts on marine ecosystems worldwide. In this thesis I investigated the role of salinity tolerance from an evolutionary perspective, using a wide range of techniques, spanning from population genetics and common-garden experiments to characterizing potential genes involved in osmoregulation in barnacles. I used the acorn barnacle species Balanus (Amphibalanus) improvisus, which displays a remarkably broad salinity tolerance, to investigate how this trait has influenced the species' potential to establish in new environments, and respond to projected near-future salinity reductions in coastal seas. I also examined physiological and molecular mechanisms that may be involved in osmoregulation in B. improvisus. I further analysed population genetic structure using microsatellites and mitochondrial DNA, and related the results to anthropogenic and natural dispersal dynamics on both global and regional (Baltic Sea) scales. I found high genetic diversity in most populations, with many shared haplotypes between distant populations. This supports the hypothesis that maritime shipping is an important vector for the dispersal of the cosmopolitan species B. improvisus. Nonetheless, natural larval dispersal is also important on smaller geographical scales, such as within the Baltic Sea. Marked genetic differentiation between northern and southern Baltic Sea populations raises the question whether there is restricted gene flow within the Baltic Sea, creating potential for local adaptations to evolve. To investigate the extent to which the broad distribution of B. improvisus along the Baltic Sea salinity gradient is explained by local adaptation versus physiological plasticity, I performed a common-garden experiment in which multiple populations were exposed to different salinities and multiple fitness-related phenotypic traits were recorded. The experiment confirmed that phenotypic plasticity, rather than local adaptation, explained the broad distribution of the species along the salinity gradient. Interestingly, all populations of B. improvisus performed best at low and intermediate salinities in many fitness-related traits (survival, growth and reproduction), although other traits (e.g. shell strength an juvenile growth) indicated higher costs associated with low salinity. A candidate gene approach was used to investigate the molecular basis of broad salinity tolerance in B. improvisus by characterizing the Na+/K+ ATPase (NAK) of B. improvisus – an ion transporter commonly involved in active osmoregulation in many species. We identified two main gene variants in B. improvisus (NAK1 and NAK2), and found that NAK1 mRNA existed in two isoforms that were differentially expressed in different life stages and adult tissues, suggesting an active role in osmoregulation. Lastly, I summarise current knowledge about salinity tolerance in barnacles and outline new research directions to further our understanding of the physiological and molecular mechanisms involved in salinity tolerance in barnacles
    corecore