3 research outputs found

    Nothing a Hot Bath Won't Cure: Infection Rates of Amphibian Chytrid Fungus Correlate Negatively with Water Temperature under Natural Field Settings

    Get PDF
    Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10–50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75–100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications

    Experimental exposures of boreal toads (Bufo boreas) to a pathogenic Chytrid fungus (Batrachochytrium dendrobatidis)

    No full text
    One of the major causes of worldwide amphibian declines is a skin infection caused by a pathogenic chytrid fungus (Batrachochytrium dendrobatidis). This study documents the interactions between this pathogen and a susceptible amphibian host, the boreal toad (Bufo boreas). The amount of time following exposure until death is influenced by the dosage of infectious zoospores, duration of exposure, and body size of the toad. The significant relation between dosage and the number of days survived (dose-response curve) supports the hypothesis that the degree of infection must reach a particular threshold of about 107–108 zoosporangia before death results. Variation in air temperature between 12°C and 23°C had no significant effect on survival time. The infection can be transmitted from infected to healthy animals by contact with water containing zoospores; no physical contact between animals is required. These results are correlated with observations on the population biology of boreal toads in which mortalities associated with B. dendrobatidis have been identified
    corecore