51 research outputs found

    Calf health from birth to weaning. III. housing and management of calf pneumonia

    Get PDF
    Calfhood diseases have a major impact on the economic viability of cattle operations. A three part review series has been developed focusing on calf health from birth to weaning. In this paper, the last of the three part series, we review disease prevention and management with particular reference to pneumonia, focusing primarily on the pre-weaned calf. Pneumonia in recently weaned suckler calves is also considered, where the key risk factors are related to the time of weaning. Weaning of the suckler calf is often combined with additional stressors including a change in nutrition, environmental change, transport and painful husbandry procedures (castration, dehorning). The reduction of the cumulative effects of these multiple stressors around the time of weaning together with vaccination programmes (preconditioning) can reduce subsequent morbidity and mortality in the feedlot. In most studies, calves housed individually and calves housed outdoors with shelter, are associated with decreased risk of disease. Even though it poses greater management challenges, successful group housing of calves is possible. Special emphasis should be given to equal age groups and to keeping groups stable once they are formed. The management of pneumonia in calves is reliant on a sound understanding of aetiology, relevant risk factors, and of effective approaches to diagnosis and treatment. Early signs of pneumonia include increased respiratory rate and fever, followed by depression. The single most important factor determining the success of therapy in calves with pneumonia is early onset of treatment, and subsequent adequate duration of treatment. The efficacy and economical viability of vaccination against respiratory disease in calves remains unclear

    The GTPase Activating Rap/RanGAP Domain-Like 1 Gene Is Associated with Chicken Reproductive Traits

    Get PDF
    BACKGROUND: Abundant evidence indicates that chicken reproduction is strictly regulated by the hypothalamic-pituitary-gonad (HPG) axis, and the genes included in the HPG axis have been studied extensively. However, the question remains as to whether any other genes outside of the HPG system are involved in regulating chicken reproduction. The present study was aimed to identify, on a genome-wide level, novel genes associated with chicken reproductive traits. METHODOLOGY/PRINCIPAL FINDING: Suppressive subtractive hybridization (SSH), genome-wide association study (GWAS), and gene-centric GWAS were used to identify novel genes underlying chicken reproduction. Single marker-trait association analysis with a large population and allelic frequency spectrum analysis were used to confirm the effects of candidate genes. Using two full-sib Ningdu Sanhuang (NDH) chickens, GARNL1 was identified as a candidate gene involved in chicken broodiness by SSH analysis. Its expression levels in the hypothalamus and pituitary were significantly higher in brooding chickens than in non-brooding chickens. GWAS analysis with a NDH two tail sample showed that 2802 SNPs were significantly associated with egg number at 300 d of age (EN300). Among the 2802 SNPs, 2 SNPs composed a block overlapping the GARNL1 gene. The gene-centric GWAS analysis with another two tail sample of NDH showed that GARNL1 was strongly associated with EN300 and age at first egg (AFE). Single marker-trait association analysis in 1301 female NDH chickens confirmed that variation in this gene was related to EN300 and AFE. The allelic frequency spectrum of the SNP rs15700989 among 5 different populations supported the above associations. Western blotting, RT-PCR, and qPCR were used to analyze alternative splicing of the GARNL1 gene. RT-PCR detected 5 transcripts and revealed that the transcript, which has a 141 bp insertion, was expressed in a tissue-specific manner. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the GARNL1 gene contributes to chicken reproductive traits

    Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium

    Get PDF
    BACKGROUND Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC. METHODS Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals). RESULTS Positive genetic correlation was observed between MD and AD (rgMD−AD = + 0.47, P = 6.6 × 10−10). AC-quantity showed positive genetic correlation with both AD (rgAD−AC quantity = + 0.75, P = 1.8 × 10−14) and MD (rgMD−AC quantity = + 0.14, P = 2.9 × 10−7), while there was negative correlation of AC-frequency with MD (rgMD−AC frequency = −0.17, P = 1.5 × 10−10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10−6). There was no evidence for reverse causation. CONCLUSION This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders. They are heritable and etiologically related behaviors that have been resistant to gene discovery efforts. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Methane emissions from permafrost thaw lakes limited by lake drainage.

    No full text
    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by climate warming, which boosts methane emission and contributes a positive feedback to future climate change. Modelling of thaw-lake growth is necessary to quantify this feedback. Here, we present a two-dimensional landscape-scale model that includes the entire life cycle of thaw lakes; initiation, expansion, drainage and eventual re-initiation. Application of our model to past and future lake expansion in northern Siberia shows that lake drainage strongly limits lake expansion, even under conditions of continuous permafrost. Our results suggest that methane emissions from thaw lakes in Siberia are an order of magnitude less alarming than previously suggested, although predicted lake expansion will still profoundly affect permafrost ecosystems and infrastructure. © 2011 Macmillan Publishers Limited

    Effect of milk feed source, frequency of feeding and age at turnout on calf performance, live-weight at mating and 1st lactation milk production

    Get PDF
    peer-reviewedFemale calves (n = 108) were assigned to 6 cold milk feeding treatments in two experiments for a 70-day period. Live-weight (LW) was measured weekly, with an additional LW taken at day 410 and post-calving for animals in experiment 1. In Experiment 1, the effect of feeding frequency and age of turnout to pasture on calf performance and 1st lactation milk yields were evaluated. The whole milk (WM) feeding treatments applied were (i) once daily feeding (OD), (ii) twice daily feeding (TD), (iii) OD feeding, outdoors at 38 days (ODO). In Experiment 2, the effects of feeding milk replacer (MR) as opposed to WM and age of turnout to pasture on calf performance were evaluated. The treatments applied were (i) OD feeding with WM (OD), (ii) OD feeding with milk replacer (MR) (ODMR), (iii) OD feeding with MR, outdoors at 38 days (ODMRO). Experiment 1: There were no differences (P > 0.05) in LW or average daily gain between TD and OD calves at day 80 or 410. ODO calves had lower LW at day 80 as compared to OD or TD (P < 0.001). Calf LW at day 80 was 86, 89 and 85 kg and at day 410 was 304, 309 and 316 kg for OD, TD and ODO, respectively. Milk feeding frequency or time of calf turnout had no effect on LW post calving, milk composition or 1st lactation milk yields. Experiment 2: Total LW at day 80 was higher (P < 0.05) for ODMR compared to OD or ODMRO calves. Calf LW was 87, 95, and 88 kg for OD, ODMR and ODMRO, respectively. However, LW at day 410 did not differ between treatments.This study showed that while some differences were observed in calf LW at day 80, these differences had no effect on LW at day 410 or 1st lactation milk yield. It can be concluded that calves can be successfully reared when fed OD with WM or MR, indoors and when turned out to pasture at 38 days of age
    corecore