30 research outputs found

    Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While manually-assisted body-weight supported treadmill training (BWSTT) has revealed improved locomotor function in persons with post-stroke hemiparesis, outcomes are inconsistent and it is very labor intensive. Thus an alternate treatment approach is desirable. Objectives of this pilot study were to: 1) compare the efficacy of body-weight supported treadmill training (BWSTT) combined with the Lokomat robotic gait orthosis versus manually-assisted BWSTT for locomotor training post-stroke, and 2) assess effects of fast versus slow treadmill training speed.</p> <p>Methods</p> <p>Sixteen volunteers with chronic hemiparetic gait (0.62 ± 0.30 m/s) post-stroke were randomly allocated to Lokomat (n = 8) or manual-BWSTT (n = 8) 3×/wk for 4 weeks. Groups were also stratified by fast (mean 0.92 ± 0.15 m/s) or slow (0.58 ± 0.12 m/s) training speeds. The primary outcomes were self-selected overground walking speed and paretic step length ratio. Secondary outcomes included: fast overground walking speed, 6-minute walk test, and a battery of clinical measures.</p> <p>Results</p> <p>No significant differences in primary outcomes were revealed between Lokomat and manual groups as a result of training. However, within the Lokomat group, self-selected walk speed, paretic step length ratio, and four of the six secondary measures improved (<it>p </it>= 0.04–0.05, effect sizes = 0.19–0.60). Within the manual group, only balance scores improved (<it>p </it>= 0.02, effect size = 0.57). Group differences between fast and slow training groups were not revealed (<it>p </it>≥ 0.28).</p> <p>Conclusion</p> <p>Results suggest that Lokomat training may have advantages over manual-BWSTT following a modest intervention dose in chronic hemiparetic persons and further, that our training speeds produce similar gait improvements. Suggestions for a larger randomized controlled trial with optimal study parameters are provided.</p

    Systematic review of the validity and reliability of consumer-wearable activity trackers

    Get PDF
    Abstract Background Consumer-wearable activity trackers are electronic devices used for monitoring fitness- and other health-related metrics. The purpose of this systematic review was to summarize the evidence for validity and reliability of popular consumer-wearable activity trackers (Fitbit and Jawbone) and their ability to estimate steps, distance, physical activity, energy expenditure, and sleep. Methods Searches included only full-length English language studies published in PubMed, Embase, SPORTDiscus, and Google Scholar through July 31, 2015. Two people reviewed and abstracted each included study. Results In total, 22 studies were included in the review (20 on adults, 2 on youth). For laboratory-based studies using step counting or accelerometer steps, the correlation with tracker-assessed steps was high for both Fitbit and Jawbone (Pearson or intraclass correlation coefficients (CC) > =0.80). Only one study assessed distance for the Fitbit, finding an over-estimate at slower speeds and under-estimate at faster speeds. Two field-based studies compared accelerometry-assessed physical activity to the trackers, with one study finding higher correlation (Spearman CC 0.86, Fitbit) while another study found a wide range in correlation (intraclass CC 0.36–0.70, Fitbit and Jawbone). Using several different comparison measures (indirect and direct calorimetry, accelerometry, self-report), energy expenditure was more often under-estimated by either tracker. Total sleep time and sleep efficiency were over-estimated and wake after sleep onset was under-estimated comparing metrics from polysomnography to either tracker using a normal mode setting. No studies of intradevice reliability were found. Interdevice reliability was reported on seven studies using the Fitbit, but none for the Jawbone. Walking- and running-based Fitbit trials indicated consistently high interdevice reliability for steps (Pearson and intraclass CC 0.76–1.00), distance (intraclass CC 0.90–0.99), and energy expenditure (Pearson and intraclass CC 0.71–0.97). When wearing two Fitbits while sleeping, consistency between the devices was high. Conclusion This systematic review indicated higher validity of steps, few studies on distance and physical activity, and lower validity for energy expenditure and sleep. The evidence reviewed indicated high interdevice reliability for steps, distance, energy expenditure, and sleep for certain Fitbit models. As new activity trackers and features are introduced to the market, documentation of the measurement properties can guide their use in research settings

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species
    corecore