3,701 research outputs found
Optical biosensor differentiates signaling of endogenous PAR1 and PAR2 in A431 cells
<p>Abstract</p> <p>Background</p> <p>Protease activated receptors (PARs) consist of a family of four G protein-coupled receptors. Many types of cells express several PARs, whose physiological significance is mostly unknown.</p> <p>Results</p> <p>Here, we show that non-invasive resonant waveguide grating (RWG) biosensor differentiates signaling of endogenous protease activated receptor subtype 1 (PAR<sub>1</sub>) and 2 (PAR<sub>2</sub>) in human epidermoid carcinoma A431 cells. The biosensor directly measures dynamic mass redistribution (DMR) resulted from ligand-induced receptor activation in adherent cells. In A431, both PAR<sub>1 </sub>and PAR<sub>2 </sub>agonists, but neither PAR<sub>3 </sub>nor PAR<sub>4 </sub>agonists, trigger dose-dependent Ca<sup>2+ </sup>mobilization as well as G<sub>q</sub>-type DMR signals. Both Ca<sup>2+ </sup>flux and DMR signals display comparable desensitization patterns upon repeated stimulation with different combinations of agonists. However, PAR<sub>1 </sub>and PAR<sub>2 </sub>exhibit distinct kinetics of receptor re-sensitization. Furthermore, both trypsin- and thrombin-induced Ca<sup>2+ </sup>flux signals show almost identical dependence on cell surface cholesterol level, but their corresponding DMR signals present different sensitivities.</p> <p>Conclusion</p> <p>Optical biosensor provides an alternative readout for examining receptor activation under physiologically relevant conditions, and differentiates the signaling of endogenous PAR<sub>1 </sub>and PAR<sub>2 </sub>in A431.</p
Femtosecond X-ray-induced fragmentation of fullerenes
A new class of femtosecond, intense, short – wavelength lasers – the free-electron laser – has opened up new opportunities to investigate the structure and dynamics in many scientific areas. These new lasers, whose performance keeps increasing, enable the understanding of physical and chemical changes at an atomic spatial scale and on the time scale of atomic motion which is essential for a broad range of scientific fields. We describe here the interaction of fullerenes in the multiphoton regime with the Linac Coherent Light Source (LCLS) X-ray free-electron laser at SLAC National Laboratory. In particular, we report on new data regarding the ionization of Ho3N@C80 molecules and compare the results with our prior C60 investigation of radiation damage induced by the LCLS pulses. We also discuss briefly the potential impact of newly available instrumentation to physical and chemical sciences when they are coupled with FELs as well as theoretical calculations and modeling
Static fracture and modal analysis simulation of a gas turbine compressor blade and bladed disk system
This paper presents a methodology for conducting a 3-D static fracture analysis with applications to a gas turbine compressor blade. An open crack model is considered in the study and crack-tip driving parameters are estimated by using 3-D singular crack-tip elements in ANSYS. The static fracture analysis is verified with a special purpose fracture code (FRANC3D). Once the crack front is perfectly defined and validated, a free vibration study is conducted by analyzing the natural frequencies and modeshapes for both a single blade and bladed disk system. Taking advantage of high performance computing resources, a high fidelity finite element model is considered in the parametric investigation. In the fracture simulation, the influence of the size of a single edged crack as well as the rotational velocity on fracture parameters (stress intensity factors and J-Integral) are evaluated. Results demonstrate that for the applied loading condition, a mixed mode crack propagation is expected. In the modal analysis study, increasing the depth of the crack leads to a decrease in the natural frequencies of both the single blade and bladed disk system, while increasing the rotational velocity increases the natural frequencies. The presence of a crack also leads to mode localization for all mode families, a phenomenon that cannot be captured by a single blade analysis.The authors gratefully acknowledge the support of the Qatar National Research Fund through Grant number NPRP 7-1153-2-432. The authors also thank Texas A&M at Qatar?s Advanced Scientific Computing (TASC) for access to the RAAD Supercomputer.Scopu
Controlling Cherenkov angles with resonance transition radiation
Cherenkov radiation provides a valuable way to identify high energy particles
in a wide momentum range, through the relation between the particle velocity
and the Cherenkov angle. However, since the Cherenkov angle depends only on
material's permittivity, the material unavoidably sets a fundamental limit to
the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring
Imaging Cherenkov detectors must employ materials transparent to the frequency
of interest as well as possessing permittivities close to unity to identify
particles in the multi GeV range, and thus are often limited to large gas
chambers. It would be extremely important albeit challenging to lift this
fundamental limit and control Cherenkov angles as preferred. Here we propose a
new mechanism that uses constructive interference of resonance transition
radiation from photonic crystals to generate both forward and backward
Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible
way with high sensitivity to any desired range of velocities. Photonic crystals
thus overcome the severe material limit for Cherenkov detectors, enabling the
use of transparent materials with arbitrary values of permittivity, and provide
a promising option suited for identification of particles at high energy with
enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary
information with 18 pages and 5 figures, appended at the end of the file with
the manuscript. Source files in Word format converted to PDF. Submitted to
Nature Physic
A gene signature for post-infectious chronic fatigue syndrome
Background: At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods: Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results: Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion: Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment
Trends of increase in western medical services in traditional medicine hospitals in china
Background:
Compare changes in types of hospital service revenues between traditional Chinese medicine (TCM) hospitals and Western-medicine based general hospitals. Methods:
97 TCM hospitals and 103 general hospitals were surveyed in years of 2000 and 2004. Six types of medical service revenue between the two types of hospitals were compared overtime. The national statistics from 1999 to 2008 were also used as complementary evidence. Results:
For TCM hospitals, the percentage of service revenue from Western medicine increased from 44.3% to 47.4% while the percentage of service revenue from TCM declined from 26.4% to 18.8% from 1999 to 2004. Percentages of revenue from laboratory tests and surgical procedures for both types of hospitals increased and the discrepancy between the two types of hospitals was narrowed from 1999 to 2004. For TCM hospitals, revenues from laboratory tests increased from 3.64% to 5.06% and revenues from surgical procedures increased from 3.44% to 7.02%. General hospitals\u27 TCM drug revenue in outpatient care declined insignificantly from 5.26% to 3.87%, while the decline for the TCM hospitals was significant from 19.73% to 13.77%. The national statistics from 1999 to 2008 showed similar trends that the percentage of revenue from Western medicine for TCM hospitals increased from 59.6% in 1999 to 62.2% in 2003 and 66.1% in 2008 while the percentage of revenue from TCM for TCM hospitals decreased from 18.0% in 1999, 15.4% in 2003, and 13.7% in 2008. Conclusion:
Western medicine has become a vital revenue source for TCM hospitals in the current Chinese health care environment where government subsidies to health care facilities have significantly declined. Policies need to encourage TCM hospitals to identify their own special and effective services, improve public perception, increase demand, strengthen financial sources, and ultimately make contributions to preserving one of the national treasures
Recommended from our members
Nutritional management of children with cerebral palsy: a practical guide
Peer reviewedFinal Published versio
- …