6 research outputs found

    Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α

    Get PDF
    Glucocorticoid levels rise dramatically in late gestation to mature foetal organs in readiness for postnatal life. Immature heart function may compromise survival. Cardiomyocyte glucocorticoid receptor (GR) is required for the structural and functional maturation of the foetal heart in vivo, yet the molecular mechanisms are largely unknown. Here we asked if GR activation in foetal cardiomyocytes in vitro elicits similar maturational changes. We show that physiologically relevant glucocorticoid levels improve contractility of primary-mouse-foetal cardiomyocytes, promote Z-disc assembly and the appearance of mature myofibrils, and increase mitochondrial activity. Genes induced in vitro mimic those induced in vivo and include PGC-1α, a critical regulator of cardiac mitochondrial capacity. SiRNA-mediated abrogation of the glucocorticoid induction of PGC-1α in vitro abolished the effect of glucocorticoid on myofibril structure and mitochondrial oxygen consumption. Using RNA sequencing we identified a number of transcriptional regulators, including PGC-1α, induced as primary targets of GR in foetal cardiomyocytes. These data demonstrate that PGC-1α is a key mediator of glucocorticoid-induced maturation of foetal cardiomyocyte structure and identify other candidate transcriptional regulators that may play critical roles in the transition of the foetal to neonatal heart

    Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology

    Get PDF
    Skeletal muscle is an organ involved in whole body movement and energy metabolism with the ability to dynamically adapt to different states of (dis-)use. At a molecular level, the peroxisome proliferator-activated receptor Îł coactivators 1 (PGC-1s) are important mediators of oxidative metabolism in skeletal muscle and in other organs. Musculoskeletal disorders as well as obesity and its sequelae are associated with PGC-1 dysregulation in muscle with a concomitant local or systemic inflammatory reaction. In this review, we outline the function of PGC-1 coactivators in physiological and pathological conditions as well as the complex interplay of metabolic dysregulation and inflammation in obesity with special focus on skeletal muscle. We further put forward the hypothesis that, in this tissue, oxidative metabolism and inflammatory processes mutually antagonize each other. The nuclear factor ÎșB (NF-ÎșB) pathway thereby plays a key role in linking metabolic and inflammatory programs in muscle cells. We conclude this review with a perspective about the consequences of such a negative crosstalk on the immune system and the possibilities this opens for clinical applications

    Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection.

    No full text
    Item does not contain fulltextAIMS/HYPOTHESIS: Heterozygous mutations in the gene of the transcription factor hepatocyte nuclear factor 4alpha (HNF-4alpha) are considered a rare cause of MODY with only 14 mutations reported to date. The description of the phenotype is limited to single families. We investigated the genetics and phenotype of HNF-4alpha mutations in a large European Caucasian collection. METHODS: HNF-4alpha was sequenced in 48 MODY probands, selected for a phenotype of HNF-1alpha MODY but negative for HNF-1alpha mutations. Clinical characteristics and biochemistry were compared between 54 HNF-4alpha mutation carriers and 32 familial controls from ten newly detected or previously described families. RESULTS: Mutations in HNF-4alpha were found in 14/48 (29%) probands negative for HNF-1alpha mutations. The mutations found included seven novel mutations: S34X, D206Y, E276D, L332P, I314F, L332insCTG and IVS5nt+1G>A. I314F is the first reported de novo HNF-4alpha mutation. The average age of diagnosis was 22.9 years with frequent clinical evidence of sensitivity to sulphonylureas. Beta cell function, but not insulin sensitivity, was reduced in diabetic mutation carriers compared to control subjects (homeostasis model assessment of beta cell function 29% p<0.001 vs controls). HNF-4alpha mutations were associated with lower apolipoprotein A2 (p=0.001), A1 (p=0.04) and total HDL-cholesterol (p=0.02) than in control subjects. However, in contrast to some previous reports, levels of triglycerides and apolipoprotein C3 were normal. CONCLUSIONS/INTERPRETATION: HNF-4alpha mutations are common when no HNF-1alpha mutation is found in strictly defined MODY families. The HNF-4alpha clinical phenotype and beta cell dysfunction are similar to HNF-1alpha MODY and are associated with reduced apolipoprotein A2 levels. We suggest that sequencing of HNF-4alpha should be performed in patients with clinical characteristics of HNF-1alpha MODY in whom mutations in HNF-1alpha are not found
    corecore