10 research outputs found
Acute exercise leads to regulation of Telomere-Associated genes and MicroRNA expression in immune Cells
Telomeres are specialized nucleoprotein structures that protect chromosomal ends from degradation. These structures progressively shorten during cellular division and can signal replicative senescence below a critical length. Telomere length is predominantly maintained by the enzyme telomerase. Significant decreases in telomere length and telomerase activity are associated with a host of chronic diseases; conversely their maintenance underpins the optimal function of the adaptive immune system. Habitual physical activity is associated with longer leukocyte telomere length; however, the precise mechanisms are unclear. Potential hypotheses include regulation of telomeric gene transcription and/or microRNAs (miRNAs). We investigated the acute exercise-induced response of telomeric genes and miRNAs in twenty-two healthy males (mean age = 24.1±1.55 years). Participants undertook 30 minutes of treadmill running at 80% of peak oxygen uptake. Blood samples were taken before exercise, immediately post-exercise and 60 minutes post-exercise. Total RNA from white blood cells was submitted to miRNA arrays and telomere extension mRNA array. Results were individually validated in white blood cells and sorted T cell lymphocyte subsets using quantitative real-time PCR (qPCR). Telomerase reverse transcriptase (TERT) mRNA (P = 0.001) and sirtuin-6 (SIRT6) (P<0.05) mRNA expression were upregulated in white blood cells after exercise. Fifty-six miRNAs were also differentially regulated post-exercise (FDR <0.05). In silico analysis identified four miRNAs (miR-186, miR-181, miR-15a and miR-96) that potentially targeted telomeric gene mRNA. The four miRNAs exhibited significant upregulation 60 minutes post-exercise (P<0.001). Telomeric repeat binding factor 2, interacting protein (TERF2IP) was identified as a potential binding target for miR-186 and miR-96 and demonstrated concomitant downregulation (P<0.01) at the corresponding time point. Intense cardiorespiratory exercise was sufficient to differentially regulate key telomeric genes and miRNAs in white blood cells. These results may provide a mechanistic insight into telomere homeostasis and improved immune function and physical health. Funding NHMR
Association between common telomere length genetic variants and telomere length in an African population and impacts of HIV and TB
Prior studies in predominantly European (Caucasian) populations have discovered common genetic variants (single nucleotide polymorphisms, SNPs) associated with leukocyte telomere length (LTL), but whether these same variants affect LTL in non-Caucasian populations are largely unknown. We investigated whether six genetic variants previously associated with LTL (TERC (rs10936599), TERT (rs2736100), NAF1 (7675998), OBFC1 (rs9420907), ZNF208 (rs8105767), and RTEL1 (rs755017)) are correlated with telomere length (TL) in peripheral blood mononuclear cells (PBMCs) in a cohort of Africans living with and without HIV and undergoing evaluation for tuberculosis (TB). We found OBFC1 and the genetic sum score of the effect alleles across all six loci to be associated with shorter TL (adjusted for age, gender, HIV status, and smoking pack-years (p < 0.02 for both OBFC1 and the genetic sum score). In an analysis stratified by HIV status, the genetic sum score is associated with LTL in both groups with and without HIV. On the contrary, a stratified analysis according to TB status revealed that in the TB-positive subgroup, the genetic sum score is not associated with LTL, whereas the relationship remains in the TB-negative subgroup. The different impacts of HIV and TB on the association between the genetic sum score and LTL indicate different modes of modification and suggest that the results found in this cohort with HIV and TB participants may not be applied to the African general population. Future studies need to carefully consider these confounding factors
TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence
ABSTRACT Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene