63 research outputs found

    The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment

    Get PDF
    MET is located on chromosome 7q31 and is a proto-oncogene that encodes for hepa-tocyte growth factor (HGF) receptor, a member of the receptor tyrosine kinase (RTK) family. HGF, also known as scatter factor (SF), is the only known ligand for MET. MET is a master regulator of cell growth and division (mitogenesis), mobility (motogenesis), and differentiation (morphogenesis); it plays an important role in normal development and tissue regeneration. The HGF-MET axis is frequently dysregulated in cancer by MET gene amplification, translocation, and mutation, or by MET or HGF protein overexpression. MET dysregulation is associated with an increased propensity for metastatic disease and poor overall prognosis across multiple tumor types. Targeting the dysregulated HGF-MET pathway is an area of active research; a number of monoclonal antibodies to HGF and MET, as well as small molecule inhibitors of MET, are under development. This review summarizes the key biological features of the HGF-MET axis, its dysregulation in cancer, and the therapeutic agents targeting the HGF-MET axis, which are in development. © 2014 Parikh et al

    Polymorphisms in the CD28/CTLA4/ICOS genes: Role in malignant melanoma susceptibility and prognosis?

    Get PDF
    The appearance of vitiligo and spontaneous regression of the primary lesion in melanoma patients illustrate a relationship between tumor immunity and autoimmunity. T lymphocytes play a major role both in tumor immunity and autoimmunity. CD28, Cytotoxic T lymphocyte antigen 4 (CTLA4) and inducible costimulator (ICOS) molecules are important secondary signal molecules in the T lymphocyte activation. Single nucleotide polymorphisms (SNPs) in the CD28/CTLA4/ICOS gene region were reported to be associated with several autoimmune diseases including, type-1 diabetes, SLE, autoimmune thyroid diseases and celiac disease. In this study, we investigated the association of SNPs in the CD28, CTLA4 and ICOS genes with the risk of melanoma. We also assessed the prognostic effect of the different polymorphisms in melanoma patients. Twenty-four tagging SNPs across the three genes and four additional SNPs were genotyped in a cohort of 763 German melanoma patients and 734 healthy German controls. Influence on prognosis was determined in 587 melanoma cases belonging to stage I or II of the disease. In general, no differences in genotype or allele frequencies were detected between melanoma patients and controls. However, the variant alleles for two polymorphisms in the CD28 gene were differentially distributed in cases and controls. Similarly no association of any polymorphism with prognosis, except for the rs3181098 polymorphism in the CD28 gene, was observed. In addition, individuals with AA genotype for rs11571323 polymorphism in the ICOS gene showed reduced overall survival. However, keeping in view the correction for multiple hypothesis testing our results suggest that the polymorphisms in the CD28, CTLA4 and ICOS genes at least do not modulate risk of melanoma and nor do those influence the disease prognosis in the investigated population

    A phase I clinical trial of continual alternating etoposide and topotecan in refractory solid tumours

    Get PDF
    The goal of this phase I study was to develop a novel schedule using oral etoposide and infusional topotecan as a continually alternating schedule with potentially optimal reciprocal induction of the nontarget topoisomerase. The initial etoposide dose was 15 mg m−2 b.i.d. days (D)1–5 weeks 1,3,5,7,9 and 11, escalated 5 mg per dose per dose level (DL). Topotecan in weeks 2,4,6,8,10 and 12 was administered by 96 h infusion at an initial dose of 0.2 mg m−2 day−1 with a dose escalation of 0.1, then at 0.05 mg m−2 day−1. Eligibility criteria required no organ dysfunction. Two dose reductions or delays were allowed. A total of 36 patients with a median age of 57 (22–78) years, received a median 8 (2–19) weeks of chemotherapy. At DL 6, dose-limiting toxicities consisted of grade 3 nausea, vomiting and intolerable fatigue. Three patients developed a line-related thrombosis or infection and one subsequently developed AML. There was no febrile neutropenia. There were six radiologically confirmed responses (18%) and 56% of patients demonstrated a response or stable disease, typically with only modest toxicity. Oral etoposide 35 mg m−2 b.i.d. D1–5 and 1.8 mg m−2 96 h (total dose) infusional topotecan D8–11 can be administered on an alternating continual weekly schedule for at least 12 weeks, with promising clinical activity

    Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development

    Get PDF
    Producción CientíficaBackground: Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. Methods: The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. Results: Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly improved the survival and decreased the GvHD development in mice. Conclusions: These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.Asociación Española Contra el Cáncer (Proyecto AIOA110296BLAN).Gerencia Regional de Salud de Castilla y León (Proyecto GRS 726/A13

    Local therapy of cancer with free IL-2

    Get PDF
    This is a position paper about the therapeutic effects of locally applied free IL-2 in the treatment of cancer. Local therapy: IL-2 therapy of cancer was originally introduced as a systemic therapy. This therapy led to about 20% objective responses. Systemic therapy however was very toxic due to the vascular leakage syndrome. Nevertheless, this treatment was a break-through in cancer immunotherapy and stimulated some interesting questions: Supposing that the mechanism of IL-2 treatment is both proliferation and tumoricidal activity of the tumor infiltrating cells, then locally applied IL-2 should result in a much higher local IL-2 concentration than systemic IL-2 application. Consequently a greater beneficial effect could be expected after local IL-2 application (peritumoral = juxtatumoral, intratumoral, intra-arterial, intracavitary, or intratracheal = inhalation). Free IL-2: Many groups have tried to prepare a more effective IL-2 formulation than free IL-2. Examples are slow release systems, insertion of the IL-2 gene into a tumor cell causing prolonged IL-2 release. However, logistically free IL-2 is much easier to apply; hence we concentrated in this review and in most of our experiments on the use of free IL-2. Local therapy with free IL-2 may be effective against transplanted tumors in experimental animals, and against various spontaneous carcinomas, sarcomas, and melanoma in veterinary and human cancer patients. It may induce rejection of very large, metastasized tumor loads, for instance advanced clinical tumors. The effects of even a single IL-2 application may be impressive. Not each tumor or tumor type is sensitive to local IL-2 application. For instance transplanted EL4 lymphoma or TLX9 lymphoma were not sensitive in our hands. Also the extent of sensitivity differs: In Bovine Ocular Squamous Cell Carcinoma (BOSCC) often a complete regression is obtained, whereas with the Bovine Vulval Papilloma and Carcinoma Complex (BVPCC) mainly stable disease is attained. Analysis of the results of local IL-2 therapy in 288 cases of cancer in human patients shows that there were 27% Complete Regressions (CR), 23% Partial Regressions (PR), 18% Stable Disease (SD), and 32% Progressive Disease (PD). In all tumors analyzed, local IL-2 therapy was more effective than systemic IL-2 treatment. Intratumoral IL-2 applications are more effective than peritumoral application or application at a distant site. Tumor regression induced by intratumoral IL-2 application may be a fast process (requiring about a week) in the case of a highly vascular tumor since IL-2 induces vascular leakage/edema and consequently massive tumor necrosis. The latter then stimulates an immune response. In less vascular tumors or less vascular tumor sites, regression may require 9–20 months; this regression is mainly caused by a cytotoxic leukocyte reaction. Hence the disadvantageous vascular leakage syndrome complicating systemic treatment is however advantageous in local treatment, since local edema may initiate tumor necrosis. Thus the therapeutic effect of local IL-2 treatment is not primarily based on tumor immunity, but tumor immunity seems to be useful as a secondary component of the IL-2 induced local processes. If local IL-2 is combined with surgery, radiotherapy or local chemotherapy the therapeutic effect is usually greater than with either therapy alone. Hence local free IL-2 application can be recommended as an addition to standard treatment protocols. Local treatment with free IL-2 is straightforward and can readily be applied even during surgical interventions. Local IL-2 treatment is usually without serious side effects and besides minor complaints it is generally well supported. Only small quantities of IL-2 are required. Hence the therapy is relatively cheap. A single IL-2 application of 4.5 million U IL-2 costs about 70 Euros. Thus combined local treatment may offer an alternative in those circumstances when more expensive forms of treatment are not available, for instance in resource poor countries

    Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature

    Get PDF
    Abstract Background In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Results Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Conclusions Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers
    corecore