70 research outputs found

    H_2 emission arises outside photodissociation regions in ultra-luminous infrared galaxies

    Full text link
    Ultra-luminous infrared galaxies are among the most luminous objects in the local universe and are thought to be powered by intense star formation. It has been shown that in these objects the rotational spectral lines of molecular hydrogen observed at mid-infrared wavelengths are not affected by dust obscuration, leaving unresolved the source of excitation of this emission. Here I report an analysis of archival Spitzer Space Telescope data on ultra-luminous infrared galaxies and demonstrate that star formation regions are buried inside optically thick clouds of gas and dust, so that dust obscuration affects star-formation indicators but not molecular hydrogen. I thereby establish that the emission of H_2 is not co-spatial with the buried starburst activity and originates outside the obscured regions. This is rather surprising in light of the standard view that H_2 emission is directly associated with star-formation activity. Instead, I propose that H_2 emission in these objects traces shocks in the surrounding material, which are in turn excited by interactions with nearby galaxies, and that powerful large-scale shocks cooling by means of H_2 emission may be much more common than previously thought. In the early universe, a boost in H_2 emission by this process may speed up the cooling of matter as it collapsed to form the first stars and galaxies and would make these first structures more readily observable.Comment: Main text and supplemental information, 21 pages including 6 figures, 2 table

    SWS observations of IR emission features towards compact HII regions

    Get PDF
    We present ISO Short Wavelength Spectrometer (SWS) grating spectra of six compact HII regions. In addition to strong emission lines from atomic species these spectra display infrared bands attributed to Polycyclic Aromatic Hydrocarbons (PAHs). The continuous spectral coverage of the present observations and the high spectral resolution allow to describe the detailed structure of the emission bands: the 7.7μm band is composed of two bands at 7.6 and 7.8μm, the 6.2 μm band has a long wavelength extension, there is a plateau of emission between 6 and 7μm and a new feature is reported at 11.0μm in addition to the well-known 11.2μm band. These observations also reveal large variations in the relative intensities of the dust bands, in particular between the 7.7 and 8.6μm bands. In one extreme case, the 8.6μm band is stronger than the 7.7μm band. These observations are compared to a mixed population of ionized PAHs, using new laboratory measurements

    Evolution of Interstellar Ices

    Full text link
    Abstract. Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and proba-bly H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, inter-stellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ pho-tochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs read-ily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ke-tones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species simila

    Evidence for methane and ammonia in the coma of comet P/Halley

    Get PDF
    Methane and ammonia abundances in the coma of Halley are derived from Giotto IMS data using an Eulerian model of chemical and physical processes inside the contact surface to simulate Giotto HIS ion mass spectral data for mass-to-charge ratios (m/q) from 15 to 19. The ratio m/q = 19/18 as a function of distance from the nucleus is not reproduced by a model for a pure water coma. It is necessary to include the presence of NH_3 , and uniquely NH_3 , in coma gases in order to explain the data. A ratio of production rates Q(NH_3)/Q(H20) = 0.01-Q.02 results in model values approximating the Giotto data. Methane is identified as the most probable source of the distinct peak at m/q = 15. The observations are fit best with Q(CH_4)/Q(H_20) = 0.02. The chemical composition of the comet nucleus implied by these production rate ratios is unlike that of the outer planets. On the other hand, there are also significant differences from observations of gas phase interstellar material

    Theoretical modeling of infrared emission from neutral and charged polycyclic aromatic hydrocarbons. II.

    No full text
    The nature of the carriers of the interstellar infrared (IR) emission features between 3.3 and 12.7 mum is complex. We must consider emission from a family of polycyclic aromatic hydrocarbons (PAHs) in a multiplicity of cationic charge states (+1, +2, +3, and so on), along with neutral and anionic PAHs. The adopted intrinsic IR cross sections of the various modes of the PAHs are the key to all models. Here we make a comparison between laboratory-measured cross sections and quantum chemical calculations and find that, overall, the agreement is very good. In this paper, we consider emission from a wide variety of specific PAH molecules, which includes all available data from our laboratory and quantum chemical databases. We incorporate this into our model to produce a theoretical analysis that is more realistic, detailed, and comprehensive than prior studies. PAH molecular structures that we consider include symmetric condensed, symmetric noncondensed, aromatics containing pentagonal rings, linear, and methylated PAHs. The synthesized IR spectra show large variations in peak position for the small PAHs studied, while their spectral profile is uniquely characteristic of each different molecular structure. We also investigate the spectral variations with molecular structure of a PAH population at the surface of the Orion photodissociation region (PDR) and include an example of how the IR spectrum of our PAH population varies dramatically as a function of depth (or radiation field) through the PDR. We make a comparison of these results with Infrared Space Observatory data measured at the surface of the Orion PDR. We conclude that the charge of PAHs in a composite population has a stronger effect on its IR emission spectrum than its molecular structure. However, on the basis of the PAH samples considered in this paper, detailed studies of the interstellar IR emission features can be used effectively to identify molecular characteristics of the interstellar PAH family. In Paper III, we extend the theme of this paper by investigating the effects of hydrogenation on a wide variety of PAHs up to size 54 carbon atoms and compare our results with observational profiles for the Orion PDR
    • …
    corecore