87 research outputs found
Floristic overview of the epiphytic bryophytes of terra firme forests across the Amazon basin
White sand vegetation in an Amazonian lowland under the perspective of a young geological history
What controls the formation of patchy substrates of white sand vegetation in the Amazonian lowlands is still unclear. This research integrated the geological history and plant inventories of a white sand vegetation patch confined to one large fan-shaped sandy substrate of northern Amazonia, which is related to a megafan environment. We examined floristic patterns to determine whether abundant species are more often generalists than the rarer one, by comparing the megafan environments and older basement rocks. We also investigated the pattern of species accumulation as a function of increasing sampling effort. All plant groups recorded a high proportion of generalist species on the megafan sediments compared to older basement rocks. The vegetation structure is controlled by topographic gradients resulting from the smooth slope of the megafan morphology and microreliefs imposed by various megafan subenvironments. Late Pleistocene-Holocene environmental disturbances caused by megafan sedimentary processes controlled the distribution of white sand vegetation over a large area of the Amazonian lowlands, and may have also been an important factor in species diversification during this period. The integration of geological and biological data may shed new light on the existence of many patches of white sand vegetation from the plains of northern Amazonia. © 2019, Academia Brasileira de Ciencias. All rights reserved
Desempenho de codornas de corte submetidas a diferentes níveis de proteína bruta e energia metabolizável
Desafios do planejamento municipal de saneamento básico em municípios de pequeno porte: a percepção dos gestores
Stratified analyses refine association between TLR7 rare variants and severe COVID-19
Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (OR = 46.5, p = 1.74 × 10). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway
PRODUCTION OF AUSTRALIAN CEDAR SEEDLINGS INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI IN DIFFERENT TYPES OF CONTAINERS
- …
