3,953 research outputs found

    Final discussion

    Get PDF

    Radiation can never again dominate Matter in a Vacuum Dominated Universe

    Full text link
    We demonstrate that in a vacuum-energy-dominated expansion phase, surprisingly neither the decay of matter nor matter-antimatter annihilation into relativistic particles can ever cause radiation to once again dominate over matter in the future history of the universe.Comment: updated version, as it will appear in Phys. Rev D. Title change, and some other minor alteration

    Cosmology in a supersymmetric model with gauged BLB-L

    Full text link
    We consider salient cosmological features of a supersymmetric model which is Left-Right symmetric and therefore possessing gauged BLB-L symmetry. The requirement of breaking parity and also obtaining charge preserving vacua introduces some unique features to this model (MSLRM), resulting in a preference for non-thermal Leptogenesis. Assuming that the model preserves TeV scale supersymmetry, we show that the vacuum structure generically possesses domain walls, which can serve two important purposes. They can signal a secondary inflation required to remove unwanted relics such as gravitino and moduli and also generate lepton asymmetry by a mechanism similar to electroweak baryogenesis. The requirement of disappearance of domain walls imposes constraints on the soft parameters of the theory, testable at the TeV scale. We also propose an alternative model with spontaneous parity violation (MSLR\rlap/P). Incorporating the same cosmological considerations in this case entails constraints on a different set of soft parameters.Comment: 18 pages. Minor changes in text, but conclusion remains same. Published in Phys. Rev.

    Dislocation interactions and crack nucleation in a fatigued near-alpha titanium alloy

    Get PDF
    Dislocation interactions at the crack nucleation site were investigated in near-alpha titanium alloy Ti-6242Si subjected to low cycle fatigue. Cyclic plastic strain in the alloy resulted in dislocation pile-ups in the primary alpha grains, nucleated at the boundaries between the primary alpha and the two-phase regions. These two phase regions provided a barrier to slip transfer between primary alpha grains. We suggest that crack nucleation occurred near the basal plane of primary alpha grains by the subsurface double-ended pile-up mechanism first conceived by Tanaka and Mura. Superjogs on the basal dislocations were observed near the crack nucleation location. The two phase regions showed direct transmission of dislocations between secondary alpha plates, transmitted through the beta ligaments as , which then decompose into dislocation networks in the beta. The beta ligaments themselves do not appear to form an especially impenetrable barrier to slip, in agreement with the micropillar and crystal plasticity investigations of Zhang et al
    corecore