7,164 research outputs found

    Black hole formation from point-like particles in three-dimensional anti-de Sitter space

    Full text link
    We study collisions of many point-like particles in three-dimensional anti-de Sitter space, generalizing the known result with two particles. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massless particles falling in radially from the boundary. We find that when going away from the case of equal energies and discrete rotational symmetry, this is not a trivial generalization of the two-particle case, but requires that the excised wedges corresponding to the particles must be chosen in a very precise way for a consistent solution. We also explicitly take the limit when the number of particles goes to infinity and obtain thin shell solutions that in general break rotational invariance, corresponding to an instantaneous and inhomogeneous perturbation at the boundary. We also compute the stress-energy tensor of the shell using the junction formalism for null shells and obtain agreement with the point particle picture.Comment: 42 pages, 9 figures; v2: fixed some typo

    Nonmetallic impurities improve mechanical properties of vapor-deposited tungsten

    Get PDF
    Mechanical properties of vapor deposited tungsten are improved by selective incorporation of various nonmetallic impurities. Addition of trace quantities of carbon, nitrogen, or oxygen can significantly increase both low and high temperature yield strength without greatly affecting ductile-to-brittle transition temperature

    Demographic Trends and the Pension Problem in Finland

    Get PDF
    Projections of expenditures for old age pensions, survivor pensions, and disability pensions were made for the period 1985-2050 on the basis of future developments in the population structure by age, sex, and marital status. Four demographic scenarios were formulated: (i) a Benchmark scenario, with demographic rates kept constant at their 1980-84 level; (ii) a Fertility scenario, with a rise of the Total Fertility Rate (TFR) towards replacement level; (iii) a Mortality scenario, with reductions in mortality rates of 30 percent for females, and 45 percent for males; (iv) a Western scenario, which combines extreme demographic conditions of several West European countries: a TFR of 1.28, proportions never-marrying of one-third, one-third of marriages ending in divorce, and male and female life expectancies of 74 and 81 years, respectively. The current pension system was combined with all four scenarios. Also, the impact of high female labor force participation, and a rise in the average age at retirement were investigated. The results indicate that changes in demographic conditions cannot prevent increases in and funding problems for pension expenditures in Finland. An increase in fertility has no effect on the pension system until 2030, when a larger generation will enter the labor force. Longer active periods for males and females will cause increases in pension expenditures in the future and are not long term solutions of the pension problem. Postponement of retirement age would help to balance the pension funds, but depends on the economic situation and on the labor market

    Dynamically-Induced Frustration as a Route to a Quantum Spin Ice State in Tb2Ti2O7 via Virtual Crystal Field Excitations and Quantum Many-Body Effects

    Full text link
    The Tb2_2Ti2_2O7_7 pyrochlore magnetic material is attracting much attention for its {\em spin liquid} state, failing to develop long range order down to 50 mK despite a Curie-Weiss temperature θCW∼−14\theta_{\rm CW} \sim -14 K. In this paper we reinvestigate the theoretical description of this material by considering a quantum model of independent tetrahedra to describe its low temperature properties. The naturally-tuned proximity of this system near a N\'eel to spin ice phase boundary allows for a resurgence of quantum fluctuation effects that lead to an important renormalization of its effective low energy spin Hamiltonian. As a result, Tb2_2Ti2_2O7_7 is argued to be a {\em quantum spin ice}. We put forward an experimental test of this proposal using neutron scattering on a single crystal.Comment: 5 pages, 3 figures. Version 2 has a modified introduction. Figure 2b of version 1 (experimental neutron scattering has been removed. A proposal for an experimental test is now included accompanied by a new Figure (Fig. 3

    Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap

    Get PDF
    The nature of strongly interacting Fermi gases and magnetism is one of the most important and studied topics in condensed-matter physics. Still, there are many open questions. A central issue is under what circumstances strong short-range repulsive interactions are enough to drive magnetic correlations. Recent progress in the field of cold atomic gases allows to address this question in very clean systems where both particle numbers, interactions and dimensionality can be tuned. Here we study fermionic few-body systems in a one dimensional harmonic trap using a new rapidly converging effective-interaction technique, plus a novel analytical approach. This allows us to calculate the properties of a single spin-down atom interacting with a number of spin-up particles, a case of much recent experimental interest. Our findings indicate that, in the strongly interacting limit, spin-up and spin-down particles want to separate in the trap, which we interpret as a microscopic precursor of one-dimensional ferromagnetism in imbalanced systems. Our predictions are directly addressable in current experiments on ultracold atomic few-body systems.Comment: 12 pages, 6 figures, published version including two appendices on our new numerical and analytical approac
    • …
    corecore