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Abstract
The nature of strongly interacting Fermi gases and magnetism is one of the most
important and studied topics in condensed-matter physics. Still, there are many
open questions. A central issue is under what circumstances strong short-range
repulsive interactions are enough to drive magnetic correlations. Recent progress
in the field of cold atomic gases allows one to address this question in very clean
systems where both particle numbers, interactions and dimensionality can be
tuned. Here we study fermionic few-body systems in a one dimensional har-
monic trap using a new rapidly converging effective-interaction technique, plus
a novel analytical approach. This allows us to calculate the properties of a single
spin-down atom interacting with a number of spin-up particles, a case of much
recent experimental interest. Our findings indicate that, in the strongly inter-
acting limit, spin-up and spin-down particles want to separate in the trap, which
we interpret as a microscopic precursor of one-dimensional ferromagnetism in
imbalanced systems. Our predictions are directly addressable in current
experiments on ultracold atomic few-body systems.
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1. Introduction

Few-fermion systems are the building blocks of matter. Atoms and nuclei are well-known
examples, but also systems such as quantum dots, superconducting grains, and other nanoscale
structures are of great interest. The key to understanding such structures is first and foremost the
relation between the discrete level structure, due to the finite size, and the strength and nature of
interparticle interactions. An exciting recent development in atomic physics is the experimental
realization of few-body Fermi systems with ultracold atoms [1, 2]. These setups are extremely
versatile as the potential that traps the atoms can produce lattices and/or low-dimensional
geometries [3], and the atomic interaction strength may be tuned via the use of Feshbach
resonances [4]. The spin-1 2 nature of electrons or nucleons is addressable by populating two
hyperfine states in the atoms and we thus have a direct mapping from the atomic setup to
ordinary matter. We will refer to these two components as spin up and spin down.

A seminal contribution of ultracold atomic gas research is the realization of strongly
interacting quantum gases [5–8] using confinement-induced resonances [9]. The Tonks–Gir-
ardeau (TG) gas [10–12] of strongly repulsive bosons that displays fermionic behavior [13, 14]
is one such example [5–7]. The so-called super-TG (sTG) limit of very strong attractive
interactions has also been addressed both theoretically [15–23] and experimentally [8]. Most
recently, the TG and sTG states have been explored in fermionic systems [24–28]3. While the
two-body system in a harmonic trap has a well-known exact solution for any interaction
strength, known as the Busch model [29], two-component fermionic few-body systems with
more than two particles have not been solved exactly. Although a number of numerical studies
have been performed (see discussion below), many questions still remain related to the main
difficulty in the handling of very strong interactions in the vicinity of the fermionization limit.

In this article we face this challenge and consider the experimentally accessible situation of
a harmonically trapped few-body system in one dimension with ↑N spin up and ↓N spin down
fermions for the imbalanced case where > =↑ ↓N N 1. Zero-range interactions of strength g are
employed between different spin components, while the identical spin particles remain non-
interacting by the Pauli exclusion principle. This is a few-body analog of the fermionic polaron,
which is currently under intense study [30–32]. We solve the few-body problem for various
interaction strengths using a numerical technique inspired by developments in nuclear physics
[33, 34]. This method is exact for any interaction strength in the limit of infinite model space; it
yields both the energy spectrum and energy eigenstate wave functions and indeed shows
excellent convergence properties. In addition, we present an exact solution for the =↑N 2 case
in the fermionization limit of infinite interaction strength, using an analytical model. The classic
work of McGuire [35, 36] solved the untrapped case with periodic boundary conditions for
arbitrary ↑N and g, but the trapped case has only been solved exactly for =↑N 1 [29] and for
resonant interaction in three dimensions [37].

2. Results

We are interested in obtaining numerically exact eigensolutions for the system of trapped atoms
with arbitrary strong, zero-range interaction between different spin components. We use
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harmonic-oscillator (HO) units, in which the Hamiltonian is
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where lengths are in units of the oscillator length ω= b m , energies in units of the trap
oscillator energy ω , σ = ±, and σ σ˜ = − . The interaction strength, g, becomes dimensionless in
units of ω b. These units are used for all quantities, unless we explicitly state otherwise. The
Hamiltonian is parity invariant and one can classify states as either even or odd under → −x x.
We concentrate mostly on the first non-trivial case beyond the two-fermion system, which is

=↑N 2, =↓N 1 (denoted 2+1). The many-body problem is solved using an effective-interaction
approach that uses the exact analytical solution of the two-body problem as input. As we
discuss below in appendix A, this speeds up the convergence tremendously and allows us to
obtain very accurate results for mesoscopic samples with particle numbers of order ten. We
stress that our approach is far superior to exact diagonalization with the bare zero-range
interaction, which has a very slow convergence (see appendix A). The numerical method used
in this work therefore represents a significant advance in the description of strongly interacting,
finite-size quantum systems.

In figure 1 we show the numerically obtained energy spectrum for the 2+1 system; plotted
on a cylinder where the fermionization limit → ∞g is on the front while weak-coupling

→g 0 is on the back. We plot the total intrinsic energy, i.e. the total energy minus ω 2 from
the center of mass motion in the trap. This way of plotting the spectrum emphasizes the spectral
flow and the connection to the Zeldovich rearrangement effect [38]. The first interesting feature
is the ground state behavior; it starts as a strongly bound dimer plus a particle for → −∞g ,
wraps around the cylinder to the non-interacting limit, →g 0, and then becomes energetically
degenerate with two other states at → ∞g . Another representation of the 2+1 spectrum for odd
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Figure 1. Energy spectrum for a three-body system ( = =↑ ↓N N2, 1) in a harmonic trap
as a function of the strength, − g1 , of the zero-range interaction between up and down
components. The cylinder plot highlights the connections of the different states in the
non-interacting (g = 0) and strongly-interacting ( = ∞g ) limits; on the back and the
front of the cylinder, respectively. The states are ordered according to their spatial parity
(odd or even). See also figure 2.



and even parity states is shown in figure 2. The horizontal lines correspond to totally
antisymmetric states, which are non-interacting in the case of zero-range interactions. For
example, the lowest such state, at ω= E 4 , corresponds to having one particle in each of the
three lowest HO states. At = ∞g it becomes degenerate with two interacting states. Note also
that we have many molecular branches close to = ∞g for <g 0 (dimmed curves in figure 2).
Starting from → +g 0 (far left in the figure) and following the odd ground state we see that it
makes a jump around = ∞g before becoming non-interacting at → −g 0 (far right). This is an
analog of the so-called repulsive branch for untrapped polarons [31, 32]. Repulsive branch
means that excited states are pushed up on the attractive side of the → ∞g resonance in
constrast to the lower-lying molecular branches that become strongly bound, as shown in
figures 1 and 2. However, the jump endured by the odd and even states that become degenerate
at = ∞g is quite different. For comparison, we plot the two-body Busch results shifted by the
energy of a free spectator particle (dashed blue line in figure 2), which turns out to be almost
identical to the even parity state at low energy. This even parity state therefore has an atom-
dimer structure, with almost no interaction between atom and dimer. This has also been
observed in three-dimensional traps [39].

A particularly interesting feature of the interacting states, as they cross-over to the
attractive side of → ∞g , is their density distributions that we show in figure 3 for the odd
ground state. While they are approaching the fermionization limit → ∞g for the total density,
the spin-resolved densities demonstrate a distinct separation in the trap. This we interpret as a
precursor of ferromagnetic behavior in a one-dimensional few-body context for imbalanced
systems. In the vicinity of = ∞g , the ground, first excited, and non-interacting states all have
completely different spin-resolved densities; the ground state has the impurity at the center and
the first excited state has the impurity at the edge while the non-interacting state yields a three-
hump profile independent of spin. This has all been verified using our analytical model (see
appendix B). Since the states are degenerate at = ∞g , this clearly demonstrates that the
behavior is not due to energetics but to different correlations in the wave functions. It also
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Figure 2. Energy spectrum for the 2+1 system (excluding the center-of-mass
contribution). Diverging states on the attractive side are dimmed. The Busch-model
for a 1+1 system plus the energy of a spectator particle has been added for comparison.



shows that the fermionization limit is very different for two-component fermions as compared
to fermionization of bosons.

The approach that we have presented can be applied to larger systems. In figure 4 we show
the spin-resolved densities for the ground states of the +3 1, +6 1, and +9 1 systems as a
function of the (repulsive) interaction strength. These spin densities show the same spin
separation behavior in the limit of fermionization as the +2 1 case in figure 3. Our results imply
that this is a more general feature of one-dimensional two-component Fermi systems. These
general structures can be experimentally investigated by tunneling [2, 40].

3. Discussion

Current experiments on few-fermion systems [1, 2] can study the structures that we predict by
performing tunneling measurements that map out the occupancies of the few-body wave
function. By varying g one can explore the structure on both sides of the resonance [2]. It is
possible to go diabatically from the repulsive ground state and onto the repulsive branch on the

<g 0 side since the overlap with the atom+dimer molecular branch is small. It is thus possible
to investigate a large part of the parameter space. In figure 5 we show the occupancies of
different single-particle levels in the trap. Note how well our analytical model reproduces the
numerical results for >g 0. By selective ejection of the minority particle it is possible to
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Figure 3. Density distributions of the 2+1 ground state as a function of the (repulsive)
interaction strength, g. Panels (a) and (b) show the spin-separated density distributions
for the impurity (spin-down) and majority (spin-up) particles, respectively. Panel (c)
corresponds to the total density. The density of the non-interacting totally antisymmetric
state is plotted for comparison together with the analytical model for the odd-parity
ground state at fermionization.
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Figure 4. Spin-resolved densities for the 3+1, 6+1, and 9+1 systems, cf figure 3. Panels
(a), (c) and (e) show the distribution of the impurity particle, while panels (b), (d) and (f)
show the majority density.

Figure 5. Occupations numbers as a function of the interaction strength for the ground
state of the 2+1 system. Panels (a) and (b) show the spin-separated occupation numbers,
while (c) corresponds to the total occupation number.



measure the majority occupation number. A preliminary comparison to experimental data
shows agreement with our predictions4.

Our numerical and analytical findings show that around fermionization the two spins tend
to separate in the trap. We interpret this as a few-body precursor of Stoner ferromagnetism [41]
in one dimensional imbalanced systems. Ferromagnetism is hotly pursued topic at the moment
both in balanced and imbalanced Fermi systems [42–49]. As discussed above, this separation of
species should be directly observable in current experiments [2, 50, 51]. Other methods have
been employed recently to similar systems to study energy spectra [52, 53] and also the density
profiles [28]. Here we have presented a complementary method that converges extremely fast
for multi-particle systems. We have also provided new analytical insights into the problem by
obtaining a wave function for >g 0 that becomes exact at → ∞g and reproduces both
degeneracies, densities, and occupation numbers (see appendix B). Lastly, we note that a recent
paper by Gharashi and Blume [54] has studied some of the same systems using a different
method. Our results for similar systems ( +2 1 and +3 1) are in agreement with [54], and both
are in agreement with the exact solution for large repulsive interactions presented in [55].
However, they do not agree with the results based on symmetry arguments presented in [24].
The reasons that symmetry and group theoretical arguments and spin algebra cannot be used to
determine the eigenstates for large but finite interaction strengths are discussed in the appendix
of [55] and some explicit examples are given in the supplementary material of [54].

Magnetism is often considered a bulk property of a system while magnetic correlations
such as super-exchange, etc, are typically discussed in the context of just a few particles. Many
studies of magnetism in one dimension are conducted in a flat potential and employing periodic
boundary conditions starting from the work of McGuire [35, 36]. Dispensing of the periodic
boundaries (which are not suitable for the few-body systems studied here), we may consider
how our results would change if we had replaced the harmonic trap with a hard-wall box
potential. Since the degeneracy in the strongly interacting limit is a result of short-range
correlations in the wave function (nodal structures), we do not expect anything to change there.
However, since the approach to the strongly interacting regime certainly depends on the single-
particle wave functions (as clearly seen in the analytical model presented here) the spectrum
will change quantitatively under the constraint that the degeneracies at infinite coupling strength
are preserved.

The effective-interaction approach used in this work is key to the quality of our numerical
results and to our conclusions. In the construction of these effective interactions we benefit from
having access to the exact two-body solutions. However, we stress that, using numerical two-
body solutions, this approach can be generalized to study many-body systems in higher
dimensions, with finite-range interactions, and in any trapping potential.
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Appendix A. Effective interaction approach

We solve numerically the many-body Schrödinger equation with the Hamiltonian (1) in a finite
basis constructed from the HO single-particle states n . Each many-body basis state is written

as … ⊗↑ ↓n n nN1 i.e. a product of a HO antisymmetrized state of the ↑N spin up particles and a

HO single particle state for the spin down particle. The corresponding HO energy is

+ … + + +↑ ↓( )n n nN
N

1 2
where = +↑ ↓N N N is the total number of particles. The model space

truncation is defined by a total upper limit, i.e., + … + + ⩽↑ ↓n n n nN1 tot. Since we are only
interested in the intrinsic dynamics of states, a Lawson projection term [56] is used to push
away many-body solutions corresponding to excitations of the center of mass motion.

Instead of the bare zero-range interaction in (1), we consider an effective two-body
interaction in order to speed up the convergence of the eigenenergies with respect to the size of
the many-body basis. The effective potential VP

eff is constructed in a truncated two-body space
P, defined as the set of two-body relative HO states whose radial quantum number are smaller
or equal to a cutoff nP. The effective force VP

eff is designed such that its solutions correspond to
exact solutions given by the Busch formula [29]. Using a unitary transformation, we construct a
two-body effective Hamiltonian HP

eff as [33]

=
†

† †( ) ( )
H

U

U U
E

U

U U
, (A.1)( )

P
PP

PP PP

PP
PP

PP PP

eff 2

where E ( )
PP

2 is the diagonal matrix formed by the +n 1P lowest exact energies given by the Busch
formula, and UPP is the matrix whose rows are formed by the corresponding eigenvectors

projected on P. The effective interaction VP
eff is obtained from HP

eff by subtracting the HO

potential. For each cutoff nP, we diagonalize the many-body Schrödinger equation withVP
eff and

increase ntot until convergence of the many-body energies is reached [33]. We find that
= +n n 2Ptot is sufficient to capture the properties of the effective interaction. With this choice,

we can then study the energy convergence as a function of ntot. By construction, this unitary
transformation approach will reproduce exact bare Hamiltonian results (both energy spectrum
and wave functions) in the → ∞nP limit.

The excellent convergence property of our method is demonstrated in figure A1 that shows

the relative error − ∞ ∞( )E E Entot
in the ground state energy of the +2 1 system as a function of

the size of the model space ntot. We show results using the bare interaction for several different

strengths, and one sequence of results obtained with the effective interaction VP
eff for the

strongest case. For each interaction strength, we define ∞E as the converged result obtained with

VP
eff . Fast convergence will then be characterized by the relative difference being close to zero

already for small ntot. As expected, with the bare interaction, the convergence with ntot is much
slower for the strong interactions: for =g1 1 the relative error is ∼1% for =n 64tot , whereas for
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=g1 0.01, the relative error is still ∼4% for the same model space. On the other hand, for
=g1 0.01, the result obtained with the effective interaction is within 0.01% of the fully

converged value already at =n 14tot . Dashed lines correspond to a fit to the bare interaction

results using the functional form: = + λ
∞

−E E cnn tottot
, with λ∞E c, , as free fit parameters.

Appendix B. Analytical model

We now present an analytical approach that captures the behavior of the wave function exactly

at = ∞g . We first define Jacobi coordinates, = −↑ ↑( )x x x 21 2 and

= − +↓ ↑ ↑( )y x x x2 3 63 1 2 , and use these to obtain the spherical variables,

= +r x y2 2 and ϕ = y xtan . For g = 0, the (unnormalized) eigenstates are

μϕμ
ν
μ −( ) ( )r L r e cosr2 22

and μϕμ
ν
μ −( ) ( )r L r e sinr2 22

, where μ and ν are non-negative integers

and ν
μ ( )L z is the associated Laguerre polynomial. The corresponding energies are

ν μ= + +E 2 1. We need only consider the wave function in the interval ϕ π< <0 2 since
one can use the Pauli principle and parity invariance to extend to ϕ π< <0 2 . At ϕ π= 6
opposite spins overlap. The full solution can thus be obtained by matching the wave function
and its derivative on the line ϕ π= 6. We have

π π=( ) ( )F r F r, 6 , 6 and (B.1)1 2

π
ϕ

π
π

π
∂

∂
−

∂
∂

= −
( ) ( ) ( )

r

F r

r

F r g

r
F r

1

2

, 6 1

2

, 6

2
, 6 , (B.2)2

1

2

2
1

where F1 and F2 are solutions for ϕ π< <0 6 and π ϕ π< <6 2 respectively. For ≠g 0 these
equations are complicated to solve, but by introducing an ad hoc rescaled strength parameter

=g gr
0

we decouple the equations and can write ϕ Ψ ϕ=( ) ( ) ( )F r R r,i i i for i = 1,2, where
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Figure A1. Relative error − ∞ ∞( )E E Entot
in the ground state energy of the +2 1

system as a function of the many-body model-space truncation ntot. We show results for
several bare interaction strengths (represented by circles, diamonds, and squares), and
the effective-interaction results for the strongest case, =g1 0.01, (crosses). In this latter
case, = +n n 2Ptot , where nP is the truncation of the two-body space.



= μ
ν
μ −( )( )R r r L r ei

r2 22

. This rescaled model becomes exact when → ∞g [57]. The

eigenfunctions and eigenvalue equations can now be obtained by using the free angular
solutions μϕ μϕ+( ) ( )A Bcos sin and the conditions in equations (B.1) and (B.2). The nature
of the three-fold degeneracy at fermionization seen in figures 1 and 2 comes from the odd and
even solutions of these equations, while the non-interacting has the structure ϕ( )cos 3 . In the

case of μ > 0, the angular wavefunction for odd parity becomeΨ μπ μϕ= ( ) ( )N sin 3 coso1 and

Ψ μ π ϕ μπ= −( )( ) ( )N sin 2 cos 6o2 , and for even parity Ψ μπ μϕ= ( ) ( )N sin 3 sine1 and

Ψ μ π ϕ μπ= −( )( ) ( )N sin 2 sin 6e2 , while the energies can be obtained from the algebraic

equations for odd, μ μπ μπ μπ+ =( ) ( ) ( )gcos 2 2 cos 6 sin 3 0
0

, and even

μ μπ μπ μπ+ =( ) ( ) ( )gsin 2 2 sin 6 sin 3 0
0

solutions. No and Ne, are normalization factors.

The important point is that μπ( )N sin 3o and μπ( )N sin 3e are non-zero in the limit μ → 3 and
thus the wave functions are non-zero.

References

[1] Serwane F et al 2011 Science 332 336
[2] Zürn G et al 2012 Phys. Rev. Lett. 108 075303
[3] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. A 80 885
[4] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[5] Paredes B et al 2004 Nature 429 277
[6] Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
[7] Kinoshita T, Wenger T and Weiss D S 2005 Phys. Rev. Lett. 95 190406
[8] Haller E et al 2009 Science 325 1224
[9] Olshanii M 1998 Phys. Rev. Lett. 81 938

[10] Tonks L W 1936 Phys. Rev. 50 955
[11] Girardeau M D 1960 J. Math. Phys. 1 516
[12] Lieb E H and Liniger W 1963 Phys. Rev. 130 1605
[13] Deuretzbacher F et al 2008 Phys. Rev. Lett. 100 160405
[14] Christensson J, Forssén C, Åberg S and Reimann S M 2009 Phys. Rev. A 79 012707
[15] Astrakharchik G E, Blume D, Giorgini S and Granger B E 2004 Phys. Rev. Lett. 92 030402
[16] Astrakharchik G E, Boronat J, Casulleras J and Giorgini S 2005 Phys. Rev. Lett. 95 190407
[17] Batchelor M T, Bortz M, Guan X-W and Oelkers N 2005 J. Stat. Mech. 2005 L10001
[18] Tempfli E, Zöllner S and Schmelcher P 2009 New J. Phys. 11 073015
[19] Girardeau M D and Astrakharchik G E 2010 Phys. Rev. A 81 061601
[20] Girardeau M D 2011 Phys. Rev. A 83 011601
[21] Valiente M 2012 Europhys. Lett. 98 10010
[22] Brouzos I and Schmelcher P 2012 Phys. Rev. Lett. 108 045301
[23] Girardeau M D and Astrakharchik G E 2012 Phys. Rev. Lett. 109 235305
[24] Guan L, Chen S, Wang Y and Ma Z-Q 2009 Phys. Rev. Lett. 102 160402
[25] Girardeau M D 2010 Phys. Rev. A 82 011607
[26] Chen S, Guan X W, Yin X, Guan L and Batchelor M T 2010 Phys. Rev. A 81 031608
[27] Guan L and Chen S 2010 Phys. Rev. Lett. 105 175301
[28] Brouzos I and Schmelcher P 2013 Phys. Rev. A 87 023605

New J. Phys. 16 (2014) 063003 E J Lindgren et al

10

http://dx.doi.org/10.1126/science.1201351
http://dx.doi.org/10.1103/PhysRevLett.108.075303
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1103/PhysRevLett.95.190406
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRev.50.955
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRevLett.100.160405
http://dx.doi.org/10.1103/PhysRevA.79.012707
http://dx.doi.org/10.1103/PhysRevLett.92.030402
http://dx.doi.org/10.1103/PhysRevLett.95.230405
http://dx.doi.org/10.1088/1742-5468/2005/10/L10001
http://dx.doi.org/10.1088/1367-2630/11/7/073015
http://dx.doi.org/10.1103/PhysRevA.81.043601
http://dx.doi.org/10.1103/PhysRevA.83.011601
http://dx.doi.org/10.1209/0295-5075/98/10010
http://dx.doi.org/10.1103/PhysRevLett.108.045301
http://dx.doi.org/10.1103/PhysRevLett.109.235305
http://dx.doi.org/10.1103/PhysRevLett.102.160402
http://dx.doi.org/10.1103/PhysRevA.82.037604
http://dx.doi.org/10.1103/PhysRevB.81.214444
http://dx.doi.org/10.1103/PhysRevLett.105.175301
http://dx.doi.org/10.1103/PhysRevA.87.023605


[29] Busch T, Englert B-G, Rzaż̧ewski K and Wilkens M 1998 Found. Phys. 28 549
[30] Schirotzek A, Wu C-H, Sommer A and Zwierlein M W 2009 Phys. Rev. Lett. 102 230402
[31] Kohstall C et al 2012 Nature 485 615
[32] Koschorreck M et al 2012 Nature 485 619
[33] Rotureau J 2013 Eur. Phys. J. D 67 153
[34] Lisetskiy A F, Barrett B R, Kruse M K G, Navratil P, Stetcu I and Vary J P 2008 Phys. Rev. C 78 044302
[35] McGuire J B 1965 J. Math. Phys. 6 432
[36] McGuire J B 1966 J. Math. Phys. 7 123
[37] Werner F and Castin Y 2006 Phys. Rev. Lett. 97 150401
[38] Farrell A, MacDonald Z and van Zyl B P 2012 J. Phys. A: Math. Theor. 45 045303
[39] Daily K M and Blume D 2010 Phys. Rev. A 81 053615
[40] Rontani M 2012 Phys. Rev. Lett. 108 115302
[41] Stoner E 1933 Phil. Mag. 15 1018
[42] Jo G-B et al 2009 Science 325 1521
[43] Cui X and Zhai H 2010 Phys. Rev. A 81 041602
[44] Pekker D et al 2011 Phys. Rev. Lett. 106 050402
[45] Zhang S and Ho T-L 2011 New J. Phys. 13 055003
[46] Massignan P and Bruun G M 2011 Eur. Phys. J. D 65 83
[47] Sanner C et al 2012 Phys. Rev. Lett. 108 240404
[48] Cui X and Ho T-L 2013 Phys. Rev. Lett. 110 165302
[49] Massignan P, Yu Z and Bruun G M 2013 Phys. Rev. Lett. 110 230401
[50] Zürn G 2012 PhD Thesis Ruprecht-Karls Universität Heidelberg
[51] Sala S et al 2013 Phys. Rev. Lett. 110 203202
[52] Harshman N L 2012 Phys. Rev. A 86 052122
[53] Gharashi S E, Daily K M and Blume D 2012 Phys. Rev. A 86 042702
[54] Gharashi S E and Blume D 2013 Phys. Rev. Lett. 111 045302
[55] Volosniev A G et al 2013 arXiv:1306.4610v2
[56] Gloeckner D H and Lawson R D 1974 Phys. Lett. B 53 313
[57] Zinner N T et al 2013 arXiv:1309.7219

New J. Phys. 16 (2014) 063003 E J Lindgren et al

11

http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1038/nature11065
http://dx.doi.org/10.1038/nature11151
http://dx.doi.org/10.1140/epjd/e2013-40156-8
http://dx.doi.org/10.1103/PhysRevC.78.044302
http://dx.doi.org/10.1063/1.1704291
http://dx.doi.org/10.1063/1.1704798
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1088/1751-8113/45/4/045303
http://dx.doi.org/10.1103/PhysRevA.81.053615
http://dx.doi.org/10.1103/PhysRevLett.108.115302
http://dx.doi.org/10.1126/science.1177112
http://dx.doi.org/10.1103/PhysRevA.81.042112
http://dx.doi.org/10.1103/PhysRevLett.106.050402
http://dx.doi.org/10.1088/1367-2630/13/5/055003
http://dx.doi.org/10.1140/epjd/e2011-20084-5
http://dx.doi.org/10.1103/PhysRevLett.108.240404
http://dx.doi.org/10.1103/PhysRevLett.110.153901
http://dx.doi.org/10.1103/PhysRevLett.110.230401
http://dx.doi.org/10.1103/PhysRevLett.110.203202
http://dx.doi.org/10.1103/PhysRevA.86.052122
http://dx.doi.org/10.1103/PhysRevA.86.042702
http://dx.doi.org/10.1103/PhysRevLett.111.045302
http://arXiv.org/abs/1306.4610v2
http://dx.doi.org/10.1016/0370-2693(74)90390-6
http://arXiv.org/abs/1309.7219

	1. Introduction
	2. Results
	3. Discussion
	Acknowledgments
	Appendix A.
	Appendix B.
	References



