40 research outputs found

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Complex Self-reproducing Systems

    No full text
    Abstract. Cellular automata and L-Systems are well-known formal models to describe the behaviour of biological processes. They are discrete dynamical systems, each of which can have complex and varied behaviour. Here, we study a class of substitutive systems incorporating properties of both cellular automata and L-systems, that exhibits self-reproducing behaviour. A one-dimensional array of cells is considered, each cell has a set of modes or states which are determined by a number from Z/nZ ∗ (n prime). The behaviour of a cell depends on the states of its neighbours and obeys to an additive rule. It has also a cell-division mode, which allows the line of cells to grow. The behaviour of such a model can be complex, but, using algebraic techniques, we prove that it can describe a reproducing system.
    corecore