5,731 research outputs found

    Robust dispatch with power flow routing and renewables

    Get PDF
    The uncertainty and variability of renewable energy sources are challenging problems in the operation of power systems. In this paper, we focus on the robust dispatch of generators to overcome the uncertainty of renewable power predictions. The energy management costs of supply, spinning reserve, and power losses, are jointly optimized by the proposed robust optimal power flow (OPF) method with a column-And-constraint generation algorithm. Conic relaxation is applied to the non-convex alternating-current power flow regions with the phase angle constraints for loops retained by linear approximation. The proposed method allows us to solve the robust OPF problem efficiently with good accuracy and to incorporate power flow controllers and routers into the OPF framework. Numerical results on the IEEE Reliability Test System show the efficacy of our robust dispatch strategy in guaranteeing immunity against uncertain renewable generation, as well as in reducing the energy management costs through power flow routing. © 2015 IEEE.postprin

    Online scheduling for vehicle-to-grid regulation service

    Get PDF
    Electric vehicle (EV) fleets can provide ancillary services, such as frequency regulation, to the utility grid, if their charging/discharging schedules are coordinated appropriately. In this paper, a multi-level architecture for bidirectional vehicleto-grid regulation service is proposed. In this architecture, aggregators coordinate the charging/discharging schedules of EVs in order to meet their shares of regulation demand requested by the grid operator. Based on this architecture, the scheduling problem of V2G regulation is then formulated as a convex optimization problem, which in turn degenerates to an online scheduling problem for charging/discharging of EVs. It requires only the current and past regulation profiles, and does not depend on the accurate forecast of regulation demand. A decentralized algorithm, which enables every EV to solve its local optimization problem and obtain its own schedule, is applied to solve the online scheduling problem. Based on the household driving pattern and regulation signal data from the PJM market, a simulation study of 1,000 EVs has been performed. The simulation results show that the proposed online scheduling algorithm is able to smooth out the power fluctuations of the grid by coordinating the EV schedules, demonstrating the potential of V2G in providing regulation service to the grid.published_or_final_versio

    Optimal Scheduling With Vehicle-to-Grid Regulation Service

    Get PDF
    In a vehicle-to-grid (V2G) system, aggregators coordinate the charging/discharging schedules of electric vehicle (EV) batteries so that they can collectively form a massive energy storage system to provide ancillary services, such as frequency regulation, to the power grid. In this paper, the optimal charging/discharging scheduling between one aggregator and its coordinated EVs for the provision of the regulation service is studied. We propose a scheduling method that assures adequate charging of EVs and the quality of the regulation service at the same time. First, the scheduling problem is formulated as a convex optimization problem relying on accurate forecasts of the regulation demand. By exploiting the zero-energy nature of the regulation service, the forecast-based scheduling in turn degenerates to an online scheduling problem to cope with the high uncertainty in the forecasts. Decentralized algorithms based on the gradient projection method are designed to solve the optimization problems, enabling each EV to solve its local problem and to obtain its own schedule. Our simulation study of 1000 EVs shows that the proposed online scheduling can perform nearly as well as the forecast-based scheduling, and it is able to smooth out the real-time power fluctuations of the grid, demonstrating the potential of V2G in providing the regulation service.published_or_final_versio

    Architectural design and load flow study of power flow routers

    Get PDF
    Power flow routing is an emerging control paradigm for the dynamic and responsive control of electric power flows. In this paper, we investigate the design and modelling of the power flow router (PFR) which is a major building block of power flow routing. First, a generic PFR architecture is proposed to encapsulate the desired functions of PFRs. Then, the load flow model of PFRs is developed and incorporated into the optimal power flow (OPF) framework. Based on the load flow model, the control capabilities of PFR, such as decoupled branch power flows and enlarged flow regions, are analysed. With particular attention to available transfer capability (ATC), an OPF study on the standard IEEE benchmark systems with 14, 57, and 118 buses has been performed to show that ATC can be enhanced remarkably by installing the proposed PFRs at some critical buses of the power network.published_or_final_versio

    Optimal Power Flow with Power Flow Routers

    Get PDF
    Power flow routing is an emerging control paradigm for the dynamic control of electric power flows. In this paper, we propose a generic model of a power flow router (PFR) and incorporate it into the optimal power flow (OPF) problem. First, a generic PFR architecture is proposed to encapsulate the desired functions of PFRs. Then, the load flow model of PFRs is developed and incorporated into the OPF framework. To pursue global optimality of the non-convex PFR-incorporated OPF (PFR-OPF) problem, we develop a semidefinite programming (SDP) relaxation of PFR-OPF. By introducing the regularization terms that favor a low-rank solution and tuning the penalty coefficients, a rank-1 solution can be obtained and used for recovering an optimal or near-optimal solution of the PFR-OPF and the results are verified in numerical tests. The efficacy of the PFR-OPF framework allows us to investigate the impact of PFR integration. With the system loadability as an example, the numerical results show that remarkable enhancement can be achieved by installing PFRs at certain critical buses of the network.postprin

    Predicting Anatomical Therapeutic Chemical (ATC) Classification of Drugs by Integrating Chemical-Chemical Interactions and Similarities

    Get PDF
    The Anatomical Therapeutic Chemical (ATC) classification system, recommended by the World Health Organization, categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query compounds, how can we identify which ATC-class (or classes) they belong to? It is an important and challenging problem because the information thus obtained would be quite useful for drug development and utilization. By hybridizing the informations of chemical-chemical interactions and chemical-chemical similarities, a novel method was developed for such purpose. It was observed by the jackknife test on a benchmark dataset of 3,883 drug compounds that the overall success rate achieved by the prediction method was about 73% in identifying the drugs among the following 14 main ATC-classes: (1) alimentary tract and metabolism; (2) blood and blood forming organs; (3) cardiovascular system; (4) dermatologicals; (5) genitourinary system and sex hormones; (6) systemic hormonal preparations, excluding sex hormones and insulins; (7) anti-infectives for systemic use; (8) antineoplastic and immunomodulating agents; (9) musculoskeletal system; (10) nervous system; (11) antiparasitic products, insecticides and repellents; (12) respiratory system; (13) sensory organs; (14) various. Such a success rate is substantially higher than 7% by the random guess. It has not escaped our notice that the current method can be straightforwardly extended to identify the drugs for their 2nd-level, 3rd-level, 4th-level, and 5th-level ATC-classifications once the statistically significant benchmark data are available for these lower levels

    The effects of different fatigue levels on brain–behavior relationships in driving

    Full text link
    © 2019 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. Background: In the past decade, fatigue has been regarded as one of the main factors impairing task performance and increasing behavioral lapses during driving, even leading to fatal car crashes. Although previous studies have explored the impact of acute fatigue through electroencephalography (EEG) signals, it is still unclear how different fatigue levels affect brain–behavior relationships. Methods: A longitudinal study was performed to investigate the brain dynamics and behavioral changes in individuals under different fatigue levels by a sustained attention task. This study used questionnaires in combination with actigraphy, a noninvasive means of monitoring human physiological activity cycles, to conduct longitudinal assessment and tracking of the objective and subjective fatigue levels of recruited participants. In this study, degrees of effectiveness score (fatigue rating) are divided into three levels (normal, reduced, and high risk) by the SAFTE fatigue model. Results: Results showed that those objective and subjective indicators were negatively correlated to behavioral performance. In addition, increased response times were accompanied by increased alpha and theta power in most brain regions, especially the posterior regions. In particular, the theta and alpha power dramatically increased in the high-fatigue (high-risk) group. Additionally, the alpha power of the occipital regions showed an inverted U-shaped change. Conclusion: Our results help to explain the inconsistent findings among existing studies, which considered the effects of only acute fatigue on driving performance while ignoring different levels of resident fatigue, and potentially lead to practical and precise biomathematical models to better predict the performance of human operators

    Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites

    Get PDF
    It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using Gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches

    Analysis and Prediction of the Metabolic Stability of Proteins Based on Their Sequential Features, Subcellular Locations and Interaction Networks

    Get PDF
    The metabolic stability is a very important idiosyncracy of proteins that is related to their global flexibility, intramolecular fluctuations, various internal dynamic processes, as well as many marvelous biological functions. Determination of protein's metabolic stability would provide us with useful information for in-depth understanding of the dynamic action mechanisms of proteins. Although several experimental methods have been developed to measure protein's metabolic stability, they are time-consuming and more expensive. Reported in this paper is a computational method, which is featured by (1) integrating various properties of proteins, such as biochemical and physicochemical properties, subcellular locations, network properties and protein complex property, (2) using the mRMR (Maximum Relevance & Minimum Redundancy) principle and the IFS (Incremental Feature Selection) procedure to optimize the prediction engine, and (3) being able to identify proteins among the four types: “short”, “medium”, “long”, and “extra-long” half-life spans. It was revealed through our analysis that the following seven characters played major roles in determining the stability of proteins: (1) KEGG enrichment scores of the protein and its neighbors in network, (2) subcellular locations, (3) polarity, (4) amino acids composition, (5) hydrophobicity, (6) secondary structure propensity, and (7) the number of protein complexes the protein involved. It was observed that there was an intriguing correlation between the predicted metabolic stability of some proteins and the real half-life of the drugs designed to target them. These findings might provide useful insights for designing protein-stability-relevant drugs. The computational method can also be used as a large-scale tool for annotating the metabolic stability for the avalanche of protein sequences generated in the post-genomic age
    corecore