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Abstract—Electric vehicle (EV) fleets can provide ancillary
services, such as frequency regulation, to the utility grid, if their
charging/discharging schedules are coordinated appropriately. In
this paper, a multi-level architecture for bidirectional vehicle-
to-grid regulation service is proposed. In this architecture, ag-
gregators coordinate the charging/discharging schedules of EVs
in order to meet their shares of regulation demand requested
by the grid operator. Based on this architecture, the scheduling
problem of V2G regulation is then formulated as a convex
optimization problem, which in turn degenerates to an online
scheduling problem for charging/discharging of EVs. It requires
only the current and past regulation profiles, and does not depend
on the accurate forecast of regulation demand. A decentralized
algorithm, which enables every EV to solve its local optimization
problem and obtain its own schedule, is applied to solve the online
scheduling problem. Based on the household driving pattern
and regulation signal data from the PJM market, a simulation
study of 1,000 EVs has been performed. The simulation results
show that the proposed online scheduling algorithm is able to
smooth out the power fluctuations of the grid by coordinating the
EV schedules, demonstrating the potential of V2G in providing
regulation service to the grid.

I. INTRODUCTION

Electric vehicles (EVs) can provide ancillary services,
such as regulation services, to the utility grid if their
charging/discharging schedules are coordinated appropri-
ately. Therefore, the scheduling problem for EV charg-
ing/discharging is an important research topic in recent years.
Most research on this topic falls into two categories: EV
charging control and vehicle-to-grid (V2G) scheduling.

Studies on EV charging control regard the EV charging
load as controllable load. Research on smart/coordinated EV
charging can be categorized as centralized control [1], [2],
and decentralized control [3], [4]. They try to determine the
optimal EV charging schedules to minimize the distribution
system losses by flattening the total load without sacrificing the
charging needs of EVs. However, the centralized algorithms
proposed in [1], [2] are inadequate due to high computational
complexity as the number of EVs scales up. This is one of
the key reasons why the decentralized control strategies [3],
[4], which distribute the computation to EVs and allow them
to determine their schedules locally, are preferred, since the
penetration of EVs is expected to be high in the future. We
regard the formulation and algorithms proposed in [1]–[4] as
forecast-based, since they all require accurate forecasts of the

base load or non-EV load to perform the optimal EV charging
control.

V2G seeks to utilize the battery packs installed on EVs
as energy storage to provide energy and ancillary services to
the grid [5]. It can be both unidirectional when EVs provide
ancillary services by modulating their charging rates, and
bidirectional when EVs are also allowed to discharge their
batteries to inject energy back to the grid. Most research efforts
on V2G ancillary services focus on frequency regulation
service. Frequency regulation is a zero-energy service that
compensates the minute-to-minute fluctuations of generation
and demand [6]. Distributed control strategies based on local
frequency measurement have been proposed in [7], [8]. The
control strategy proposed in [7] ensures that an EV will be
charged to a desired level of state-of-charge (SOC), but it
cannot achieve the global optimum among the EV fleet since
the control is for a single EV and the discharging/charging
schedules of EVs are not coordinated. In [8], each EV decides
its own charging/discharging schedule in response to its locally
measured frequency deviation, but there is no guarantee on
charging needs. Again, global optimum is not achievable.
In [9], [10], centralized scheduling is employed where an
aggregator acts as the central controller. They try to optimize
the schedules of the EV fleets so as to maximize the revenue of
regulation service. However, they do not consider whether the
EVs are adequately charged. The concept of EV aggregators is
applied in [9], [10], but no existing work has clearly specifiied
the structure or architecture of the V2G system consisting of
the utility grid, aggregators, and EVs. Moreover, the functions
and relations of different parts of the system have not been
well defined.

In this paper, we try to tackle the problems of V2G
scheduling mentioned above. In Section II, we first propose
a multi-level architecture for bidirectional V2G regulation
service with three types of operation protocols. The scheduling
problem is then formulated as a convex optimization problem
which may be operated online with guarantees of adequate
charging for EVs in Section III. A decentralized algorithm
is designed to solve the optimization problem in Section IV.
Simulation results are presented and discussed in Section V.
Finally, Section VI draws the conclusions.

IEEE SmartGridComm 2013 Symposium - Architectures and Models for the Smart Grid

978-1-4799-1526-2/13/$31.00 ©2013 IEEE 43



II. SYSTEM ARCHITECTURE

In this section, we propose a multi-level system architecture,
the schematic diagram of which is shown in Fig. 1, for
the provision and operation of bidirectional V2G frequency
regulation service. The architecture consists of three key com-
ponents: the grid operator, the aggregators, and a set of EVs.
It has a hierarchical structure with multiple levels of nodes.
The utility grid operator is the root node. The aggregators
directly connected to the grid operator are called level-1
aggregators. An aggregator directly connected to a group of
level-(l+ 1) aggregators is called a level-l aggregator, where
l = 1, 2, · · · , NL, and NL is the number of aggregator levels
in the system. For convenience, the aggregators directly con-
nected to EVs are called aggregators of EVs. Correspondingly,
all the other aggregators are called aggregators of aggregators.
Each aggregator node can be viewed as the “root node” of
a subtree of aggregators and EVs. The size of a subtree
is determined by the size of its subordinate EV fleets and
other geographical, economic, and/or technical factors, such
as the communication radius, delay, and cost between nodes at
different levels. For instance, a parking lot or a certain area of
a large parking lot can install an aggregator of EVs. A number
of such parking areas can be controlled by an aggregator of
aggregators.

As illustrated in Fig. 1, there are three types of oper-
ation protocols, namely, grid operator-aggregator protocol,
aggregator-aggregator protocol, and aggregator-EV protocol.
Each protocol operates between a node and its immediate
subordinate nodes. The grid operator-aggregator protocol gov-
erns how the grid operator assigns the regulation requests
to and coordinates the level-1 aggregators to meet regulation
demand. The regulation requests are the aggregators’ shares
of regulation demand according to their signed contracts for
regulation service. The aggregator-aggregator protocol governs
how an aggregator of aggregators coordinates its immedi-
ate subordinate aggregator to meet regulation requests. The
aggregator-EV protocol specifies the process and algorithm
for an aggregator of EVs to coordinate its connected EVs to
decide their charging/discharging schedules. In other words,
the aggregators act as the interface between the utility grid
and EV fleets so that the grid operator does not need to
care about the individual charging/discharging profiles of EVs.
These EVs can collectively form a massive energy storage
system to provide regulation service. In this paper, the focus
is on the design of the aggregator-EV protocol.

III. PROBLEM FORMULATION

The scheduling problem of EVs, which determines the
charging/discharging scheduling of EVs, is the most important
problem for the operation of the proposed architecture for the
V2G regulation service. In this section, we focus on the design
of the aggregator-EV protocol and derive a practical formu-
lation of the online scheduling for V2G frequency regulation
for an aggregator of EVs. The proposed formulation jointly
considers the provision of regulation service and the charging

Fig. 1. Multi-level Architecture of Bidirectional V2G.

guarantees for EVs, and does not depend on the accurate
forecast of regulation demand.

A. Model and Constraints

Consider a scenario where an aggregator of EVs coordinates
NEV EVs to schedule their charging/discharging profiles to
meet the share of regulation demand assigned to the aggregator
and fulfill the charging requirements of the EVs over a par-
ticipation period [Tbegin, Tend], which is divided equally into
NT time slots of length ∆t. Let T := {Tk|k = 1, 2, . . . , NT }
be the set of the slotted participation period, R(Tk) be the
assigned share of regulation demand at time slot Tk, and
Pn(Tk) be the charging/discharging power of EV n at Tk,
for Tk ∈ T and n ∈ N := {1, 2, . . . , NEV }. We assume
that the share of regulation demand of an aggregator accounts
for a fixed proportion of the total regulation demand in the
grid during T . R(Tk) > 0 means that the aggregator should
coordinate the NEV EVs to provide regulation up or deliver
active power to the grid. Similarly, R(Tk) < 0 provides
regulation down or absorbs excessive power from the grid.
When Pn(Tk) > 0, EV n is charging or consuming power.
When Pn(Tk) < 0, it is discharging its battery or delivering
power back to the grid. Denote the plug-in time and plug-out
time of EV n as Tn,in and Tn,out, respectively. Define the
lower bound Pn(Tk) and upper bound Pn(Tk) of Pn(Tk) for
Tk ∈ T and n ∈ N as:

Pn(Tk) :=

{
Pn,discharge if Tk ∈ [Tn,in, Tn,out]

0 if Tk /∈ [Tn,in, Tn,out]
(1)

and

Pn(Tk) :=

{
Pn,charge if Tk ∈ [Tn,in, Tn,out]

0 if Tk /∈ [Tn,in, Tn,out]
(2)

where Pn,discharge and Pn,charge denote the limits of dis-
charging power and charging power of EV n, respectively.

2
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Thus
Pn(Tk) ≤ Pn(Tk) ≤ Pn(Tk), t ∈ T , n ∈ N (3)

Let SOCn,0, SOCn(Tk), and Cn be the initial SOC, SOC
at the end of Tk, and capacity of the battery pack of EV n,
respectively. We propose two constraints for the SOC of the
battery pack during the plugged-in period of EV n, where
n ∈ N as follows:

SOCn(TNT ) ≥ SOCn,MinCharged (4)
SOCn,min ≤ SOCn(Tk) ≤ SOCn,max, Tk ∈ T (5)

From (4), SOCn,MinCharged denotes the minimum value
of SOC that EV n needs to reach before it is plugged out.
The minimum amount of energy to charge for EV n before it
is plugged out, En,min, can be expressed as:

En,min := Cn (SOCn,MinCharged − SOCn,0) (6)

From (5), SOCn,min and SOCn,max denote the lower and
upper SOC limits, respectively, of EV n for all Tk ∈ T . This
constraint is to avoid deep-discharging or over-charging of the
battery so as to protect the longevity of the battery.

B. Formulation of the Scheduling Problem
According to the model in Section III-A, an aggregator

receiving a regulation request R(Tk) would coordinate its
managed EVs to determine their charging/discharging power
to smooth out the fluctuation by minimizing:

|R(Tk) +
∑
n∈N

Pn(Tk)| (7)

or
(R(Tk) +

∑
n∈N

Pn(Tk))2 (8)

We call the term
∑

n∈N Pn(Tk) in (7) and (8) the aggre-
gated EV power at Tk ∈ T . Since (7) is non-convex, it entails
a higher computational complexity for optimization than the
convex one (8). Thus, we choose (8) instead and introduce a
forecast-based or offline formulation of the scheduling prob-
lem over the participation period T . Assume that, before the
participation period T , the aggregator receives the forecasting
profile of its assigned regulation demand {R(Tk)|Tk ∈ T }.
Then, it coordinates the EVs to determine the optimal schedule
by the following optimization:

min
{Pn(Tk)|n∈N ,Tk∈T }

∑
Tk∈T

(R(Tk) +
∑
n∈N

Pn(Tk))2 (9)

The optimization result of the forecast-based formulation (9)
provides the best possible schedule if the forecasting profile of
{R(Tk)|Tk ∈ T } is accurate. However, in reality, the forecast
of regulation demand is highly inaccurate and unreliable be-
cause regulation demand is vulnerable to forecasting errors of
generation and load. Therefore, the forecast-based formulation
is not appropriate or practical for frequency regulation.

Considering that regulation demand is derived from the
regulation signals measured in real time, an online formula-
tion, which schedules the EV power in response to the real-
time input of R(Tk), is more realistic. At time slot Tk, the
aggregator receives the real-time signal of R(Tk). It then

coordinates a group of EVs to update their schedules from
Tk to TNT

by the following optimization:

min
{Pn(Ti)|n∈N ,k≤i≤NT }

(R(Tk) +
∑
n∈N

Pn(Tk))2

+

NT∑
i=k+1

(E(R(Ti) | {R(Tj)|1 ≤ j ≤ k}) +
∑
n∈N

Pn(Ti))
2

(10)

Although (10) allows for real-time update of the sched-
ules and does not need accurate forecast of regulation de-
mand, it still requires the calculation of the conditional ex-
pectation of every future regulation request, i.e., the term
E (R(Ti)|{R(Tj)|1 ≤ j ≤ k}) , for i = k + 1, k + 2, · · · , NT .
Unfortunately, this calculation requires the distribution of
regulation demand which is not known a priori. Nonetheless,
since frequency regulation is a zero-energy service, which
means the expectation of the total energy that the regulation
service requires is zero over a long period of time, we can
make the following assumption:

E(
∑

Tk∈T

R(Tk)) = 0 (11)

By applying the Cauchy Inequality, we can derive a lower
bound of the second summation in the objective function of
(10) when k ≤ NT − 1 as follows:

NT∑
i=k+1

(E(R(Ti) | {R(Tj)|1 ≤ j ≤ k}) +
∑
n∈N

Pn(Ti))
2

≥ 1

NT − k
(E(

NT∑
i=k+1

R(Ti) | {R(Tj)|1 ≤ j ≤ k}) +
∑
n∈N

FPn(Ti))
2

(12)

where

FPn(Tk) :=

NT∑
i=k+1

Pn(Ti) (13)

is the sum of future charging/discharging profile of EV n.
By (11), the conditional expectation of the sum of the future

regulation requests in (12) can be calculated as:

E(

NT∑
i=k+1

R(Ti) | {R(Tj)|1 ≤ j ≤ k}) = −
k∑

j=1

R(Tj) (14)

Let Qn(Tk) := (Pn(Tk), FPn(Tk)) be the schedule of EV
n ∈ N , and Q(Tk) := (Q1(Tk), Q2(Tk), . . . , QNEV

(Tk))
denote the schedules of all EVs at time slot Tk ∈ T . We apply
the lower bound derived in (12) and propose the formulation
of online scheduling for V2G frequency regulation as follows.
For any Tk ∈ T ,

min
Q(Tk)

U(Q(Tk)) (15)

such that

Pn(Tk) + FPn(Tk) ≥ En,min

∆t
−

k−1∑
i=1

Pn(Ti) (16)

Pn(Tk) ≥ Cn

∆t
(SOCn,min − SOCn(Tk−1)) (17)

Pn(Tk) ≤ Cn

∆t
(SOCn,max − SOCn(Tk−1)) (18)

Pn(Tk) ≤ Pn(Tk) ≤ Pn(Tk) (19)

3
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NT∑
i=k+1

Pn(Tk) ≤ FPn(Tk) ≤
NT∑

i=k+1

Pn(Tk) (20)

where

U(Q(Tk)) :=


(
∑

n∈N Pn(TNT ) +R(TNT ))2 if k = NT

(
∑

n∈N Pn(Tk) +R(Tk))2 + 1
NT−k

·
(
∑

n∈N FPn(Tk)−
∑k

j=1R(Tj))
2 otherwise

(21)

The constraint set (16) – (20) is a simple transformation of
the definitions and constraints (1) – (6) introduced in Section
III-A.

It can be shown that the objective function (21) and the
set of feasible solutions under the constraint set (16) – (20)
are both convex. Therefore, the proposed formulation (15) –
(21) is a convex optimization problem. Although (15) only
seeks to optimize a lower bound of (10), it is tractable and
more practical than (10). In addition, (15) requires much lower
computational complexity than (9) and (10) since it reduces
the number of variables needed significantly.

IV. DECENTRALIZED SCHEDULING ALGORITHM

In this section, we propose a decentralized algorithm to
solve the proposed convex optimization problem (15) – (21)
for V2G scheduling.

Let 〈·, ·〉 represent the dot product operation and ‖·‖ denote
the Euclidean norm. The proposed algorithm is presented in
Algorithm 1, which is inspired by the decentralized algorithm
proposed in the work of the optimal EV charging control [3].

The stopping criterion of Algorithm 1 can be based on the
number of iteration performed, and/or the convergence of the
control signal sm within the convergence tolerance. At each
iteration, each EV n ∈ N solves an convex optimization
problem with only two variables Pn(Tk) and FPn(Tk). Hence,
Algorithm 1 requires very low computational cost. In addition,
user information privacy can be preserved since the data
related to the driving patterns of the EV owner, including the
SOC of the EV’s battery, the plug-in time, and plug-out time,
do not need to be reported in advance to the aggregator.

Theorem 1. The schedule Qm converges to the optimal
solution for the convex optimization problem (15) – (21) as
m→∞.

The proof of Theorem 1 is similar to that of Theorem 3
in [3]. Therefore, we skip the proof due to the constraint in
space.

V. CASE STUDY

In this section, the performances of the proposed online
formulation and decentralized algorithm are studied by sim-
ulation. We first outline a set of scheduling algorithms for
the provision of the V2G regulation service, followed by
a performance metric introduced for the comparison of the
scheduling algorithms. The simulation setup is then specified.
Finally, the simulation results are presented and discussed.

Algorithm 1 Online Scheduling
Input: At any time slot Tk ∈ T , the aggregator knows the

total number of time slots, NT , and the number of EVs,
NEV , and it has received the requests of regulation demand
{R(Ti)|1 ≤ i ≤ k}. Each EV n ∈ N knows about its own
constraint set (16) – (20) and the constraint parameters.

Output: Schedule Q(Tk) = (Q1(Tk), . . . , QNEV
(Tk).

Choose a parameter β satisfying 0 < β < 1
2NEV

.
Initialize the schedule Q0

n(Tk) of every EV n ∈ N as:

Q0
n(Tk) :=

{
(0, 0) k = 1

(0, FPn(Tk−1)) otherwise
(22)

Set the iteration number m← 1, repeat Steps 1) – 3).
1) The aggregator calculates the control signal sm(Tk) as

follows. When k 6= NT :

sm(Tk) := β(
∂U(Q(Tk))

∂(
∑

n∈N Pn(Tk))
,

∂U(Q(Tk))

∂(
∑

n∈N FPn(Tk))
)

= 2β(R(Tk) +
∑
n∈N

Pm−1
n (Tk),

1

NT − k
(

k∑
j=1

R(Tj) +
∑
n∈N

FPm−1
n (Tk)))

(23)

When k = NT :

sm(TNT ) := β(
∂U(Q(TNT ))

∂(
∑

n∈N Pn(TNT ))
, 0)

= 2β(R(TNT ) +
∑
n∈N

Pm−1
n (TNT ), 0)

(24)

Then, it broadcasts the control signal sm(Tk) to all
EVs.

2) Each EV n ∈ N calculates a new schedule Qm
n (Tk)

as:
Qm

n (Tk) := arg min
Qn(Tk)

(〈sm(Tk), Qn(Tk)〉

+
1

2

∥∥Qn(Tk)−Qm−1
n (Tk)

∥∥2)

s.t. (16), (17), (18), (19), (20) hold

(25)

and reports Qm
n (Tk) to the aggregator.

3) If the stopping criterion is not met, set m ← m + 1
and go to Step 1).

Return Qn(Tk) = Qm
n (Tk),∀n ∈ N .

A. V2G Scheduling Algorithms

The forecast-based scheduling and the online scheduling
will be studied.

As indicated in Section III-B, the forecast-based or offline
formulation (9) will provide the best possible scheduling
results only when the forecast profile of the regulation requests
is accurate. The performance of the forecast-based scheduling
with inaccurate forecast will also be tested. The forecast error
e(t) is introduced to the actual regulation request R(t) as:

R(t) = (1 + e(t))Rf (t), t ∈ T (26)

4
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where e(t) ∼ N(0, 0.3) and Rf (t) is the forecast regulation
profile. The forecast-based scheduling will be solved by the
algorithm Optimal Decentralized Charging proposed in [3].

In order to show that the proposed online formulation (15)
– (21) can jointly handle provision of regulation service and
charging requirement of EVs, a so-called “myopic” online
scheduling which only considers the current regulation de-
mand is introduced as follows:

min
{Pn(Tk)|n∈N}

(
∑
n∈N

Pn(Tk) +R(Tk))2

s.t. (16), (17), (18), (19), (20) hold
(27)

Both the proposed online scheduling and the myopic online
scheduling (27) will be studied. They will be solved by the
proposed decentralized scheduling algorithm, Algorithm 1.

B. Performance Metric
First, we define the total power Ptotal(t), which is the sum

of the regulation request and the aggregated EV power, as
follows:

Ptotal(t) := R(t) +
∑
n∈N

Pn(t), t ∈ T (28)

The variance of the total power profile, Var(Ptotal(t)), is
used as the performance metric, which is defined as follows:

Var(Ptotal(t)) :=
1

NT

NT∑
k=1

Ptotal(Tk)2 − 1

N2
T

(

NT∑
k=1

Ptotal(Tk))2

(29)

A smaller variance Var(Ptotal(t)) indicates a more flattened
profile of the total power, which means that the fluctuations of
the regulation requests are better absorbed by the aggregated
EV power, resulting in a better scheduling performance.

C. Simulation Setup

The simulation scenario is an aggregator coordinating 1,000
EVs to decide their schedules from 19:00 on a weekday to
7:00 on the following day. This 12-hour period of time is
divided equally into NT = 144 slots of length ∆t = 5
minutes. All the EVs are assumed to have been contracted
to provide V2G regulation, either unidirectionally or bidirec-
tionally. θbi ∈ [0, 1] denotes the proportion of the EVs that
participate in bidirectional V2G. According to the standard
Level 2 charging in the U.S.A [11], we assume that the power
of the EVs that participate in bidirectional and unidirectional
V2G can vary from -4.0 kW to 4.0 kW and from 0 to 4.0
kW, respectively. According to [12], the distribution of plug-
in time of EVs is close to a normal distribution. Hence, in the
simulation, the plug-in time of the EVs is assumed to follow
a normal distribution with the mean at 19:00 and the standard
deviation is equal to 1 hour. In addition, the plug-out time is
also assumed to follow a normal distribution with the mean
at 7:00 and the standard deviation is equal to 1 hour. Any
plug-in time before 19:00 and plug-out time after 7:00 is set
to be 19:00 and 7:00, respectively. The profiles of frequency
regulation demand used in the simulation are scaled data of
the fast response regulation signal of the PJM market [13]
from 19:00 on Monday, 14 January 2013 to 7:00 on Tuesday,

Fig. 2. Simulation results of forecast-based scheduling when θbi = 1.

Fig. 3. Simulation results of online scheduling when θbi = 1.

15 January 2013, because the regulation signal and regulation
demand are related linearly [14].

D. Simulation Results

The results of the forecast-based or offline scheduling in (9)
are shown in Fig. 2. The proportion θbi of bidirectional V2G
is 1, which means all the EVs participate in bidirectional V2G.
It can be observed that, ideally, the total power profile with
accurate forecast (the dash-dotted curve) is flat indicating that
the power fluctuations are smoothed out. We note that the
dash-dotted curve is close to a constant positive load of about
366 kW. This phenomenon is due to the charging requirement
of the EVs. Because of the zero energy assumption (11) of
regulation demand, the constant positive load is approximately
equal to the power consumption for satisfying the charging
needs of EVs. The total power profile with inaccurate forecast
(the dashed curve) reflects a more realistic case. Since the
schedules obtained by the offline scheduling are not able to
react to the change of real-time regulation demand, the total
power profile has frequent and significant fluctuations.

The simulation results of the proposed online scheduling
(15) and the myopic scheduling (27) when θbi = 1 are shown
in Fig. 3. Since the myopic scheduling just tries to meet the
current regulation request at each time slot without considering
the influence of the EVs’ charging requirements, it results in a
huge peak load (the dashed curve) for charging the EVs during
the last two hours of the simulation period. The proposed
online scheduling outperforms the myopic scheduling and the
offline scheduling with forecasting errors. The total power
profile (the dash-dotted curve in Fig. 3) of the proposed online

5
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Fig. 4. Influence of θbi on the proposed online scheduling.

TABLE I
PERFORMANCE OF VARIOUS SCHEDULING ALGORITHMS WHEN θbi = 1

Algorithm Forecast-Based Online
Accurate Inaccurate Proposed Myopic

Var(Ptotal(t)) 1.7 6765.6 296.1 696955.7

scheduling is almost as flat as that (the dash-dotted curve
in Fig. 2) of the offline scheduling with accurate forecast,
although it has some minor fluctuations during the final one
hour because the EVs start to be plugged out and thus become
unavailable for providing regulation.

Table I compares the performance of the forecast-based
scheduling and the online scheduling when θbi = 1 based on
the Var(Ptotal(t)) metric. It again shows that our proposed
online scheduling algorithm can perform nearly as well as
the forecast-based scheduling with accurate forecasts, and
outperforms the forecasting-based scheduling with forecast
errors and the myopic online scheduling.

Fig. 4 presents the influence of the participation ratio θbi
of bidirectional V2G on the performance of the proposed
online scheduling. The total power profile (the pointed curve)
when θbi = 0, which means that all the EVs participate
in unidirectional V2G, has many positive spikes concurrent
with the regulation up requests because the EVs cannot
discharge the batteries to provide energy back to the grid.
The total power curve (the dashed curve) when θbi = 0.5
is similar to that (the dash-dotted curve) when θbi = 1, except
for the performance degradation in the final two hours of
the simulation period. Such small performance degradation
suggests that it may not always be necessary to have all
EVs enabled with bidirectional V2G and there may exist a
minimum θbi to satisfy the regulation requests. Considering
the high infrastructure cost of bidirectional V2G, it is desired
to determine the minimum θbi. However, due to the constraint
in space, we skip the discussion in this paper.

VI. CONCLUSIONS

A multi-level architecture for bidirectional V2G regulation
service is proposed. Based on the three types of operation

protocols introduced for this architecture, the EV fleets are
able to provide frequency regulation service to the utility grid
under the coordination of the aggregators. Focused on the
design of the aggregator-EV protocol, an online formulation
for the EV charging/discharging scheduling problem is then
proposed. We apply a decentralized algorithm to solve the
proposed scheduling problem. Our simulation results show
that the proposed online scheduling algorithm can perform
nearly as well as offline scheduling with accurate forecasts
of regulation requests and outperforms off-line scheduling
with inaccurate forecasts. Future work will focus on the
algorithm design of the grid operator-aggregator protocol and
the aggregator-aggregator protocol for the distributed control
of regulation demand.
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