85 research outputs found

    Psoralen and Bakuchiol Ameliorate M-CSF Plus RANKL-Induced Osteoclast Differentiation and Bone Resorption Via Inhibition of AKT and AP-1 Pathways in Vitro

    Get PDF
    Background/Aims: Psoralen and bakuchiol are the main active compounds found in the traditional Chinese medicine Psoralea corylifolia L., and have been used to treat osteoporosis. This study aims to investigate the anti-osteoporosis effects of these two compounds using osteoclasts precursor differentiation and bone absorption assays in vitro. Methods: Primary mouse osteoclasts precursor cells were induced by M-CSF (macrophage colony stimulating factor) plus RANKL (receptor activator of nuclear factor kappa-B ligand) in vitro. TRACP (tartrate-resistant acid phosphatase) enzyme activity and toluidine blue staining were used to observe the effects of psoralen and bakuchiol on osteoclast differentiation and bone resorption, respectively. Gelatin zymography was used to assess MMP (matrix metalloproteinase) activity, and ELISA was performed to measure cathepsin K activity. Western blotting analysis for expression of phosphorylated AKT, ERK, NF-kB, and c-jun; and immunofluorescence analysis for c-jun and p65 nuclear translocation in induced osteoclasts were then used to determine the mechanism of anti-bone resorption of psoralen and bakuchiol. Results: Mature osteoclasts were induced by M-CSF plus RANKL from primary bone marrow macrophages in vitro. Both psoralen and bakuchiol significantly inhibited TRACP enzyme activity and slightly decreased the number of TRACP+ multinuclear osteoclasts induced by M-CSF plus RANKL. Bakuchiol significantly decreased bone lacunae area and attenuated MMP-2 activity induced by M-CSF plus RANKL in osteoclasts. Both psoralen and bakuchiol significantly decreased the expression and nuclear translocation of phosphorylated c-jun stimulated by M-CSF plus RANKL, but no significant effect on p65 translocation was observed in osteoclasts. Additionally, bakuchiol significantly attenuated the increased of M-CSF plus RANKL-induced phosphorylation of AKT in osteoclasts. Conclusions: Psoralen and bakuchiol ameliorated M-CSF plus RANKL-induced osteoclast differentiation and bone resorption via inhibition of AKT and AP-1 pathways activation in vitro

    The Herbal Combination of Radix astragali, Radix angelicae sinensis, and Caulis lonicerae Regulates the Functions of Type 2 Innate Lymphocytes and Macrophages Contributing to the Resolution of Collagen-Induced Arthritis

    Get PDF
    Type 2 innate lymphocytes (ILC2s), promoting inflammation resolution, was a potential target for rheumatoid arthritis (RA) treatment. Our previous studies confirmed that R. astragali and R. angelicae sinensis could intervene in immunologic balance of T lymphocytes. C. lonicerae also have anti-inflammatory therapeutic effects. In this study, the possible molecular mechanisms of the combination of these three herbs for the functions of ILC2s and macrophages contributing to the resolution of collagen-induced arthritis (CIA) were studied. Therefore, we used R. astragali, R. angelicae sinensis, and C. lonicerae as treatment. The synovial inflammation and articular cartilage destruction were alleviated after herbal treatment. The percentages of ILC2s and Tregs increased significantly. The differentiation of Th17 cells and the secretion of IL-17 and IFN-Ī³ significantly decreased. In addition, treatment by the combination of these three herbs could increase the level of anti-inflammatory cytokine IL-4 secreted, active the STAT6 signaling pathway, and then contribute to the transformation of M1 macrophages to M2 phenotype. The combination of the three herbs could promote inflammation resolution of synovial tissue by regulating ILC2s immune response network. The synergistic effects of three drugs were superior to the combination of R. astragali and R. angelicae sinensis or C. lonicerae alone

    Neuroprotective Effect of Xueshuantong for Injection (Lyophilized) in Transient and Permanent Rat Cerebral Ischemia Model

    Get PDF
    Xueshuantong for Injection (Lyophilized) (XST), a Chinese Materia Medica standardized product extracted from Panax notoginseng (Burk.), is used extensively for the treatment of cerebrovascular diseases such as acutely cerebral infarction clinically in China. In the present study, we evaluated the acute and extended protective effects of XST in different rat cerebral ischemic model and explored its effect on peroxiredoxin (Prx) 6-toll-like receptor (TLR) 4 signaling pathway. We found that XST treatment for 3 days could significantly inhibit transient middle cerebral artery occlusion (MCAO) induced infarct volume and swelling percent and regulate the mRNA expression of interleukin-1Ī² (IL-1Ī²), IL-17, IL-23p19, tumor necrosis factor-Ī± (TNFĪ±), and inducible nitric oxide synthase (iNOS) in brain. Further study demonstrated that treatment with XST suppressed the protein expression of peroxiredoxin (Prx) 6-toll-like receptor (TLR) 4 and phosphorylation level of p38 and upregulated the phosphorylation level of STAT3. In permanent MCAO rats, XST could reduce the infarct volume and swelling percent. Moreover, our results revealed that XST treatment could increase the ratsā€™ weight and improve a batch of functional outcomes. In conclusion, the present data suggested that XST could protect against ischemia injury in transient and permanent MCAO rats, which might be related to Prx6-TLR4 pathway

    The Correlation between High-Sensitivity C-Reactive Protein, Matrix Metallopeptidase 9, and Traditional Chinese Medicine Syndrome in Patients with Hypertension

    Get PDF
    Hypertension is a common disease affecting millions of people throughout the world. Currently, there is a growing interest in the traditional Chinese medicine (TCM) for patients with hypertension mainly due to the personalized therapy of TCM in many countries. Clinical treatment of patients relies on the successful differentiation of a specific TCM syndrome for hypertension. However, it is difficult to understand that TCM syndrome classifications depend on the clinical experience of a TCM practitioner. Therefore, discovering an objective biomarker associated with TCM syndrome may be beneficial for TCM syndrome classifications. This paper focused on high sensitivity C-reactive protein (HCRP), matrix metallopeptidase 9 (MMP9), and TCM syndrome, and aimed to investigate the relationships between TCM syndrome and the two inflammatory biomarkers in patients with essential hypertension. The result showed that both HCRP and MMP9 are positively correlated with syndrome of wind and phlegm turbidity. Detection of the serum levels of HCRP and MMP9 is beneficial for TCM syndrome classification and prediction of cardiovascular and cerebrovascular risk events in hypertensive patients

    SphK1/S1P Mediates PDGF-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation via miR-21/BMPRII/Id1 Signaling Pathway

    Get PDF
    Background/Aims: The underlying molecular mechanisms involved in sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate (S1P) mediation of platelet-derived growth factor (PDGF)-induced pulmonary arterial smooth muscle cell (PASMC) proliferation are still unclear, and the present study aims to address this issue. Methods: Small interfering RNA (siRNA) and microRNA inhibitor transfection was performed to block the expression of SphK1, bone morphogenetic protein receptor II (BMPRII) and microRNA-21 (miR-21). Gene expression levels of SphK1, BMPRII and inhibitor of DNA binding 1 (Id1) were detected by immunoblotting, miR-21 expression level was examined with qRT-PCR, and S1P production was measured by ELISA. Additionally, PASMC proliferation was determined by BrdU incorporation assay. Results: Our results indicated that PDGF increased the expression of SphK1 protein and S1P production, up-regulated miR-21 expression, reduced BMPRII and Id1 expression, and promoted PASMCs proliferation. Pre-silencing of SphK1 with siRNA reversed PDGF-induced S1P production, miR-21 up-regulation, BMPRII and Id1 down-regulation, as well as PASMC proliferation. Pre-inhibition of miR-21 also blocked BMPRII and Id1 down-regulation as well as PASMC proliferation caused by PDGF. Knockdown of BMPRII down-regulated Id1 expression in PASMCs. We further found that inhibition of PI3K/Akt and ERK signaling pathways, particularly ERK cascade, suppressed PDGF-induced above changes. Conclusion: Our study indicates that SphK1/S1P pathway plays an important role in PDGF-induced PASMC proliferation via miR-21/BMPRII/Id1 axis and targeting against SphK1/S1P axis might be a novel strategy in the prevention and treatment of pulmonary arterial hypertension (PAH)

    Ratiometric Electrochemical Sensor for Selective Monitoring of Cadmium Ions Using Biomolecular Recognition

    No full text
    A selective, accurate, and sensitive method for monitoring of cadmium ions (Cd<sup>2+</sup>) based on a ratiometric electrochemical sensor was developed, by simultaneously modifying with protoporphyrin IX and 6-(ferroceney) hexanethiol (FcHT) on Au particle-deposited glassy carbon electrode. On the basis of high affinity of biomolecular recognition between protoporphyrin IX and Cd<sup>2+</sup>, the functionalized electrode showed high selectivity toward Cd<sup>2+</sup> over other metal ions such as Cu<sup>2+</sup>, Fe<sup>3+</sup>, Ca<sup>2+</sup>, and so on. Electroactive FcHT played the role as the inner reference element to provide a built-in correction, thus improving the accuracy for determination of Cd<sup>2+</sup> in the complicated environments. The sensitivity of the electrochemical sensor for Cd<sup>2+</sup> was enhanced by āˆ¼3-fold through the signal amplification of electrodeposited gold nanoparticles. Accordingly, the present ratiometric method demonstrated high sensitivity, broad linear range from 100 nM to 10 Ī¼M, and low detection limit down to 10 nM (2.2 ppb), lower than EPA and WHO guidelines. Finally, the ratiometric electrochemical sensor was successfully applied in the determination of Cd<sup>2+</sup> in water samples, and the obtained results agreed well with those obtained by the conventional ICP-MS method

    Impact of International Oil Price on Energy Conservation and Emission Reduction in China

    No full text
    In the context of ā€œnew normalā€ economy and frequent ā€œhazeā€, the strategy of energy conservation and emission reduction aiming to lower costs and reduce pollution is currently still a major strategic direction in China and the world, and will remain so for some time in the future. This paper uses the annual data of West Texas Intermediate (WTI) crude oil price in 1987ā€“2014 as samples. We firstly present the direction and mechanism of the influence of oil price change on total consumption of every kind of energy by path analysis, and then consider establishing a Structural Vector Autoregression model of energy conservation and emission reduction in three statuses. Research shows that if the international oil price increases by 1%, the energy consumption per GDP and carbon dioxide emission increase by 0.092% and 0.053% respectively in the corresponding period. In the status of high energy consumption and high emission, if the international oil price increases by 1%, the energy consumption per GDP and carbon dioxide emission increase by 0.043% and 0.065% respectively in the corresponding period. In the status of low energy consumption and low emission, if the international oil price increases by 1%, the energy consumption per GDP per unit increases by 0.067% and carbon dioxide emission decreases by 0.085% in the corresponding period

    Transcriptome Analysis on the Quality of <i>EpimediumĀ koreanum</i> in Different Soil Moisture Conditions at Harvesting Stage

    No full text
    Epimedium koreanum is a traditional Chinese tonic herb. Its main medicinal components are secondary metabolites such as flavonoids and flavonol glycosides, but the biosynthetic mechanism is still unclear. Moisture conditions are a key environmental factor affecting E. koreanum medicinal components during harvesting. Different stages of E. koreanum under natural conditions after rainfall were selected to study changes in physiological properties, herb quality, and transcriptome. Malondialdehyde (MDA) content increased significantly in the D3 stage after rainfall, and protective enzyme levels also rose. Additionally, the flavonol glycoside content was relatively high. We sequenced the transcriptomes of D1, D3, and D9 (R) and identified differentially expressed genes (DEGs) related to flavonoid synthesis. This analysis allowed us to predict the roadmap and key genes involved in flavonoid biosynthesis for E. koreanum. These results suggest that the E. koreanum quality can be enhanced by natural drought conditions in the soil after precipitation during harvest. The harvesting period of E. koreanum is optimal when soil moisture naturally dries to a relative water content of 26% after precipitation. These conditions help E. koreanum tolerate a certain level of water scarcity, resulting in increased expression of flavonoid-related genes and ultimately enhancing the quality of the herb
    • ā€¦
    corecore