15,731 research outputs found

    The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators?

    Get PDF
    Dynamical systems in equilibrium have a stationary entropy; we suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have a unique specific entropy. This uniqueness, a priori unknown, should be reflected in correlations between the parameters describing the mass (light) distribution in galaxies. Following recent photometrical work (Caon et al. 1993; Graham & Colless 1997; Prugniel & Simien 1997), we use the Sersic law to describe the light profile of elliptical galaxies and an analytical approximation to its three dimensional deprojection. The specific entropy is calculated supposing that the galaxy behaves as a spherical, isotropic, one-component system in hydrostatic equilibrium, obeying the ideal gas state equations. We predict a relation between the 3 parameters of the Sersic, defining a surface in the parameter space, an `Entropic Plane', by analogy with the well-known Fundamental Plane. We have analysed elliptical galaxies in Coma and ABCG 85 clusters and a group of galaxies (associated with NGC 4839). We show that the galaxies in clusters follow closely a relation predicted by the constant specific entropy hypothesis with a one-sigma dispersion of 9.5% around the mean value of the specific entropy. Assuming that the specific entropy is also the same for galaxies of different clusters, we are able to derive relative distances between the studied clusters. If the errors are only due to the determination of the specific entropy (about 10%), then the error in the relative distance determination should be less than 20% for rich clusters. We suggest that the unique specific entropy may provide a physical explanation for the distance indicators based on the Sersic profile put forward by Young & Currie (1994, 1995) and discussed by Binggeli & Jerjen (1998).Comment: Submitted to MNRAS (05/05/99), 15 pages, 10 figure

    Analysing and controlling the tax evasion dynamics via majority-vote model

    Full text link
    Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on simple square lattices, Voronoi-Delaunay random lattices, Barabasi-Albert networks, and Erd\"os-R\'enyi random graphs. In the order to analyse and to control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhod of the noise critical qcq_{c}. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust and can be reproduced also through the nonequilibrium MVM on various topologies.Comment: 18 pages, 7 figures, LAWNP'09, 200

    Persistence in the zero-temperature dynamics of the QQ-states Potts model on undirected-directed Barab\'asi-Albert networks and Erd\"os-R\'enyi random graphs

    Full text link
    The zero-temperature Glauber dynamics is used to investigate the persistence probability P(t)P(t) in the Potts model with Q=3,4,5,7,9,12,24,64,128Q=3,4,5,7,9,12,24,64, 128, 256,512,1024,4096,16384256, 512, 1024,4096,16384 ,..., 2302^{30} states on {\it directed} and {\it undirected} Barab\'asi-Albert networks and Erd\"os-R\'enyi random graphs. In this model it is found that P(t)P(t) decays exponentially to zero in short times for {\it directed} and {\it undirected} Erd\"os-R\'enyi random graphs. For {\it directed} and {\it undirected} Barab\'asi-Albert networks, in contrast it decays exponentially to a constant value for long times, i.e, P(∞)P(\infty) is different from zero for all QQ values (here studied) from Q=3,4,5,...,230Q=3,4,5,..., 2^{30}; this shows "blocking" for all these QQ values. Except that for Q=230Q=2^{30} in the {\it undirected} case P(t)P(t) tends exponentially to zero; this could be just a finite-size effect since in the other "blocking" cases you may have only a few unchanged spins.Comment: 14 pages, 8 figures for IJM

    Quantum key distribution session with 16-dimensional photonic states

    Get PDF
    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.Comment: 8 pages, 3 figure

    Activity and abundance of methane-oxidizing bacteria in secondary forest and manioc plantations of Amazonian Dark Earth and their adjacent soils

    No full text
    The oxidation of atmospheric CH4 in upland soils is mostly mediated by uncultivated groups of microorganisms that have been identified solely by molecular markers, such as the sequence of the pmoA gene encoding the ?-subunit of the particulate methane monooxygenase enzyme. The objective of this work was to compare the activity and diversity of methanotrophs in Amazonian Dark Earth soil (ADE, Hortic Anthrosol) and their adjacent non-anthropic soil. Secondly, the effect of land use in the form of manioc cultivation was examined by comparing secondary forest and plantation soils. CH4 oxidation potentials were measured and the structure of the methanotroph communities assessed by quantitative PCR (qPCR) and amplicon pyrosequencing of pmoA genes. The oxidation potentials at low CH4 concentrations (10 ppm of volume) were relatively high in all the secondary forest sites of both ADE and adjacent soils. CH4 oxidation by the ADE soil only recently converted to a manioc plantation was also relatively high. In contrast, both the adjacent soils used for manioc cultivation and the ADE soil with a long history of agriculture displayed lower CH4 uptake rates. Amplicon pyrosequencing of pmoA genes indicated that USC?, Methylocystis and the tropical upland soil cluster (TUSC) were the dominant groups depending on the site. By qPCR analysis it was found that USC? pmoA genes, which are believed to belong to atmospheric CH4 oxidizers, were more abundant in ADE than adjacent soil. USC? pmoA genes were abundant in both forested and cultivated ADE soil, but were below the qPCR detection limit in manioc plantations of adjacent soil. The results indicate that ADE soils can harbor high abundances of atmospheric CH4 oxidizers and are potential CH4 sinks, but as in other upland soils this activity can be inhibited by the conversion of forest to agricultural plantations
    • …
    corecore