677 research outputs found

    Raman Spectroscopy of Amino Acid Crystals

    Get PDF
    In this chapter, we investigate the Raman spectra of proteinogenic amino acid crystals. Amino acids are fundamental organic molecules that compose polypeptides (a linear chain of amino acids) and proteins (folded polypeptides with specific functions) found in all living beings. Surprisingly, the number of these basic molecules is not more than 22 (20 of them commonly known as the standard amino acids, plus pyrrolysine and selenocysteine). They are defined as a molecule formed by an NH2 group, a COOH group, a lateral chain (the R group), and a hydrogen atom, all of them connected to a single carbon, the α-carbon. Interestingly, α-amino acids show chirality, i.e., they present different distributions of group of atoms around the α-carbon, being defined as l- and d-form. For amino acids and proteins found in the living beings, the l-form is the dominant form, although some exceptions have been discovered in the last decades. In this chapter, we present the Raman spectra of all standard amino acids and discuss the different kinds of vibrations found, comparing them. As complementary part of the work, we present results on vibrational properties of some amino acids using Raman spectroscopy when subjected to specific conditions, with variation in temperature or pressure. Finally, we present some perspectives as the investigation of purines, a group of molecules associated with the DNA molecule

    Communication: Transient Anion States Of Phenol...(h2o) N (n = 1, 2) Complexes: Search For Microsolvation Signatures

    Get PDF
    We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species. © 2014 AIP Publishing LLC.1415NSF; National Stroke FoundationSanche, L., (2005) Eur. Phys. J. D, 35, p. 367. , For a review, see, 10.1140/epjd/e2005-00206-6Wang, C.-R., Nguyen, J., Lu, Q.-B., (2009) J. Am. Chem. Soc., 131, p. 11320. , 10.1021/ja902675gBaccarelli, I., Bald, I., Gianturco, F.A., Illenberger, E., Kopyra, J., (2011) Phys. Rep., 508, p. 1. , 10.1016/j.physre2011.06.004Bettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126, p. 194317. , 10.1063/1.2739514De Oliveira, E.M., Lima, M.A.P., Bettega, M.H.F., Sanchez, S.D.A., Da Costa, R.F., Varella, M.T.D.N., (2010) J. Chem. Phys., 132, p. 204301. , 10.1063/1.3428620Baccarelli, I., Grandi, A., Gianturco, F.A., Lucchese, R.R., Sanna, N., (2006) J. Phys. Chem. B, 110, p. 26240. , 10.1021/jp065872nFabrikant, I.I., Caprasecca, S., Gallup, G.A., Gorfinkiel, J.D., (2012) J. Chem. Phys., 136, p. 184301. , 10.1063/1.4706604Freitas, T.C., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2009) Phys. Rev. A, 80, p. 062710. , 10.1103/PhysRevA.80.062710Freitas, T.C., Coutinho, K., Varella, M.T.D.N., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2013) J. Chem. Phys., 138, p. 174307. , 10.1063/1.4803119De Oliveira, E.M., Sanchez, S.D.A., Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Do Varella N, M.T., (2012) Phys. Rev. A, 86, pp. 020701-R. , 10.1103/PhysRevA.86.020701Jordan, K.D., Michejda, J.A., Burrow, P.D., (1976) J. Am. Chem. Soc., 98, p. 7189. , 10.1021/ja00439a014Khatymov, R.V., Muftakhov, M.V., Mazunov, V.A., (2003) Rapid Commun. Mass Spectrom., 17, p. 2327. , 10.1002/rcm.1197Dos Santos, J.S., Da Costa, R.F., Varella, M.T.D.N., (2012) J. Chem. Phys., 136, p. 084307. , 10.1063/1.3687345Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , 10.1103/PhysRevA.47.1111Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2004) J. Phys. B, 37, pp. L129. , 10.1088/0953-4075/37/6/L03Takatsuka, K., McKoy, V., (1981) Phys. Rev. A, 24, p. 2473. , 10.1103/PhysRevA.24.2473Takatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , 10.1103/PhysRevA.30.1734Barreto, R.C., Coutinho, K., Georg, H.C., Canuto, S., (2009) Phys. Chem. Chem. Phys., 11, p. 1388. , 10.1039/b816912h(1998) CRC Handbook of Chemistry and Physics, , 79th ed., edited by D. R. Lide (CRC, Boca Raton)http://dx.doi.org/10.1063/1.4892066Nenner, I., Schulz, G.J., (1975) J. Chem. Phys., 62, p. 1747. , 10.1063/1.430700Winstead, C., McKoy, V., (2007) Phys. Rev. Lett., 98, p. 113201. , 10.1103/PhysRevLett.98.113201Winstead, C., McKoy, V., (2007) Phys. Rev. A, 76, p. 012712. , 10.1103/PhysRevA.76.012712Mažín, Z., Gorfinkiel, J.D., (2011) J. Chem. Phys., 135, p. 144308. , 10.1063/1.3650236Modelli, A., Burrow, P.W., (2004) J. Phys. Chem. A, 108, p. 5721. , 10.1021/jp048759aSchmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , 10.1002/jcc.540141112Kossoski, F., Bettega, M.H.F., Varella, M.T.D.N., (2014) J. Chem. Phys., 140, p. 024317. , 10.1063/1.4861589Gallup, G., Burrow, P., Fabrikant, I., (2009) Phys. Rev. A, 79, p. 042701. , 10.1103/PhysRevA.79.042701Gallup, G., Burrow, P., Fabrikant, I., (2009) Phys. Rev. A, 80, p. 046702. , 10.1103/PhysRevA.80.046702Scheer, A.M., Mozejko, P., Gallup, G.A., Burrow, P.D., (2007) J. Chem. Phys., 126, p. 174301. , 10.1063/1.2727460Asmis, K.R., Allan, M., Pyrrole Data in the Gallery of Unpublished EEL Spectra, , http://www.chem.unifr.ch/ma/dir_allan/pyrrole_EELS.pdfHaxton, D.J., McCurdy, C.W., Rescigno, T.N., (2007) Phys. Rev. A, 75, p. 012710. , 10.1103/PhysRevA.75.012710Bode, B.M., Gordon, M.S., (1998) J. Mol. Graphics Modell., 16, p. 133. , 10.1016/S1093-3263(99)00002-9Fuke, K., Kaya, K., (1983) Chem. Phys. Lett., 94, p. 97. , 10.1016/0009-2614(83)87218-

    Electron Collisions With The Hcooh(h2o)n Complexes (n = 1, 2) In Liquid Phase: The Influence Of Microsolvation On The π Resonance Of Formic Acid

    Get PDF
    We report momentum transfer cross sections for elastic collisions of low-energy electrons with the HCOOH(H2O)n complexes, with n 1, 2, in liquid phase. The scattering cross sections were computed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for energies ranging from 0.5 eV to 6 eV. We considered ten different structures of HCOOHH2O and six structures of HCOOH(H2O)2 which were generated using classical Monte Carlo simulations of formic acid in aqueous solution at normal conditions of temperature and pressure. The aim of this work is to investigate the influence of microsolvation on the π shape resonance of formic acid. Previous theoretical and experimental studies reported a π shape resonance for HCOOH at around 1.9 eV. This resonance can be either more stable or less stable in comparison to the isolated molecule depending on the complex structure and the water role played in the hydrogen bond interaction. This behavior is explained in terms of (i) the polarization of the formic acid molecule due to the water molecules and (ii) the net charge of the solute. The proton donor or acceptor character of the water molecules in the hydrogen bond is important for understanding the stabilization versus destabilization of the π resonances in the complexes. Our results indicate that the surrounding water molecules may affect the lifetime of the π resonance and hence the processes driven by this anion state, such as the dissociative electron attachment. © 2013 AIP Publishing LLC.13817Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , 10.1126/science.287.5458.1658Hanel, G., Gstir, B., Denifl, S., Scheier, P., Probst, M., Farizon, B., Farizon, M., Märk, T.D., (2003) Phys. Rev. Lett., 90, p. 188104. , See, for example,10.1103/PhysRevLett.90.188104Denifl, S., Ptasinska, S., Cingel, M., Matejcik, S., Scheier, P., Märk, T.D., (2003) Chem. Phys. Lett., 377, p. 74. , 10.1016/S0009-2614(03)01096-0Abdoul-Carime, H., Gohlke, S., Illenberger, E., (2004) Phys. Rev. Lett., 92, p. 168103. , 10.1103/PhysRevLett.92.168103Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 074302. , See, for instance,10.1063/1.2263824Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 244302. , 10.1063/1.2424456Winstead, C., McKoy, V., Sanchez, S.D.A., (2007) J. Chem. Phys., 127, p. 085105. , 10.1063/1.2757617Gorfinkel, J.D., Caron, L.G., Sanche, L., (2006) J. Phys. B: At. Mol. Opt. Phys., 39, p. 975. , 10.1088/0953-4075/39/4/021De Oliveira, E.M., Lima, M.A.P., Bettega, M.H.F., Sanchez, S.D.A., Da Costa, R.F., Varella, M.T.D.N., (2010) J. Chem. Phys., 132, p. 204301. , references therein. 10.1063/1.3428620Martin, F., Burrow, P.D., Cai, Z., Cloutier, P., Hunting, D., Sanche, L., (2004) Phys. Rev. Lett., 93, p. 068101. , 10.1103/PhysRevLett.93.068101Scheer, A.M., Aflatooni, K., Gallup, G.A., Burrow, P.D., (2004) Phys. Rev. Lett., 92, p. 068102. , 10.1103/PhysRevLett.92.068102Sanche, L., (2005) Eur. Phys. J. D, 35, p. 367. , 10.1140/epjd/e2005-00206-6Gianturco, F.A., Luchese, R.R., Langer, J., Martin, I., Stano, M., Karwasz, G., Illenberg, E., (2005) Eur. Phys. J. D, 35, p. 417. , 10.1140/epjd/e2005-00233-3Freitas, T.C., Sanchez, S.A., Varella, M.T.D.N., Bettega, M.H.F., (2011) Phys. Rev. A, 84, p. 062714. , 10.1103/PhysRevA.84.062714Caron, L., Bouchiha, D., Gorfinkiel, J.D., Sanche, L., (2007) Phys. Rev. A, 76, p. 032716. , 10.1103/PhysRevA.76.032716Caprasecca, S., Gorfinkel, J.D., Bouchiha, D., Caron, L., (2009) J. Phys. B, 42, p. 095205. , 10.1088/0953-4075/42/9/095205Baccarelli, I., Grandi, A., Gianturco, F.A., Lucchese, R.R., Sanna, N., (2006) J. Phys. Chem. B, 110, p. 26240. , 10.1021/jp065872nFreitas, T.C., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2009) Phys. Rev. A, 80, p. 062710. , 10.1103/PhysRevA.80.062710Fabrikant, I.I., Caprasecca, S., Gallup, G.A., Gorfinkel, J.D., (2012) J. Chem. Phys., 136, p. 184301. , 10.1063/1.4706604Gianturco, F.A., Lucchese, R.R., (2004) New J. Phys., 6, p. 66. , 10.1088/1367-2630/6/1/066Gianturco, F.A., Lucchese, R.R., (2006) Eur. Phys. J. D, 39, p. 399. , 10.1140/epjd/e2006-00112-5Rescigno, T.N., Trevisan, C.S., Orel, A.E., (2006) Phys. Rev. Lett., 96, p. 213201. , 10.1103/PhysRevLett.96.213201Trevisan, C.S., Orel, A.E., Rescigno, T.N., (2006) Phys. Rev. A, 74, p. 042716. , 10.1103/PhysRevA.74.042716Vizcaino, V., Jelisavcic, M., Sullivan, J.P., Buckman, S.J., (2006) New J. Phys., 8, p. 85. , 10.1088/1367-2630/8/6/085Allan, M., (2006) J. Phys. B, 39, p. 2939. , 10.1088/0953-4075/39/14/002Bettega, M.H.F., (2006) Phys. Rev. A, 74, p. 054701. , 10.1103/PhysRevA.74.054701Allan, M., (2007) Phys. Rev. Lett., 98, p. 123201. , 10.1103/PhysRevLett.98.123201Rescigno, T.N., Trevisan, C.S., Orel, A.E., (2009) Phys. Rev. A, 80, p. 046701. , 10.1103/PhysRevA.80.046701Gallup, G.A., Burrow, P.D., Fabrikant, I.I., (2009) Phys. Rev. A, 80, p. 046702. , 10.1103/PhysRevA.80.046702Scheer, A.M., Mozejko, P., Gallup, G.A., Burrow, P.D., (2007) J. Chem. Phys., 126, p. 174301. , 10.1063/1.2727460Coutinho, K., Canuto, S., (2000) J. Chem. Phys., 113, p. 9132. , 10.1063/1.1320827Bode, B.M., Gordon, M.S., (1998) J. Mol. Graphics Modell., 16, p. 133. , 10.1016/S1093-3263(99)00002-9Coutinho, K., Canuto, S., DICE, a Monte Carlo program for molecular liquid simulation, version 2.9, University of São Paulo, São Paulo, 2009Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., (1987) J. Phys. Chem., 91, p. 6269. , 10.1021/j100308a038Moller, C., Plesset, M.S., (1934) Phys. Rev., 46, p. 618. , 10.1103/PhysRev.46.618Leininger, M.L., Allen, W.D., Schaefer, H.F., Sherrill, C.D., (2000) J. Chem. Phys., 112, p. 9213. , 10.1063/1.481764Dunning, Jr.T.H., (1989) J. Chem. Phys., 90, p. 1007. , 10.1063/1.456153Frisch, M.J., Trucks, G.W., Schlegel, H.B., GAUSSIAN 03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2003Briggs, J.M., Nguyen, T.B., Jorgensen, W.L., (1991) J. Phys. Chem., 95, p. 3315. , 10.1021/j100161a065Breneman, C.M., Wiberg, K.B., (1990) J. Comput. Chem., 11, p. 361. , 10.1002/jcc.540110311Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R., Barone, V., (2006) J. Chem. Phys., 124, p. 094107. , 10.1063/1.2173258Manzoni, V., Lyra, M.L., Gester, R.M., Coutinho, K., Canuto, S., (2010) Phys. Chem. Chem. Phys., 12, p. 14023. , 10.1039/c0cp00122hDamasceno, M.V.A., Cabral, B.J.C., Coutinho, K., (2012) Theor. Chem. Acc., 131, p. 1214. , 10.1007/s00214-012-1214-yTakatsuka, K., McKoy, V., (1981) Phys. Rev. A, 24, p. 2473. , 10.1103/PhysRevA.24.2473Takatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , 10.1103/PhysRevA.30.1734Lima, M.A.P., Brescansin, L.M., Da Silva, A.J.R., Winstead, C., McKoy, V., (1990) Phys. Rev. A, 41, p. 327. , 10.1103/PhysRevA.41.327Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , 10.1103/PhysRevA.47.1111Bachelet, G.B., Hamann, D.R., Schlüter, M., (1982) Phys. Rev. B, 26, p. 4199. , 10.1103/PhysRevB.26.4199Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Ferreira, L.G., (1996) Int. J. Quantum Chem., 60, p. 821. , 10.1002/(SICI)1097-461X(1996)60:43.0.CO;2-ZDunning, Jr.T.H., (1970) J. Chem. Phys., 53, p. 2823. , 10.1063/1.1674408Bauschlicher, C., (1980) J. Chem. Phys., 72, p. 880. , 10.1063/1.439243Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2004) J. Phys. B, 37, p. 129. , 10.1088/0953-4075/37/6/L03Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2005) J. Phys. B, 38, p. 4363. , 10.1088/0953-4075/38/24/003Gray, C.G., Gubbins, K.E., (1984) Theory of Molecular Fluids. Volume 1: Fundamentals, , (Clarendon Press, Oxford)Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , 10.1002/jcc.540141112Staley, S.W., Strnad, J.T., (1994) J. Phys. Chem., 98, p. 116. , 10.1021/j100052a020Freitas, T.C., Varella, M.T.D.N., Da Costa, R.F., Lima, M.A.P., Bettega, M.H.F., (2009) Phys. Rev. A, 79, p. 022706. , 10.1103/PhysRevA.79.022706Rivelino, R., Cabral, B.J.C., Coutinho, K., Canuto, S., (2005) Chem. Phys. Lett., 407, p. 13. , 10.1016/j.cplett.2005.03.049Miertuš, S., Scrocco, E., Tomasi, J., (1981) Chem. Phys., 55, p. 117. , 10.1016/0301-0104(81)85090-2Cancès, E., Mennucci, B., Tomasi, J., (1997) J. Chem. Phys., 107, p. 3032. , 10.1063/1.474659Hehre, W.J., Radom, L., Schleyer V. P, R., Pope, J.A., (1986) Ab Initio Molecular Orbital Theory, , 1st ed. (John Wiley and Sons, New York)Jensen, F., (2007) Introduction to Computational Chemistry, , 2nd ed. (John Wiley and Sons, West Sussex

    Indirect exchange in GaMnAs bilayers via spin-polarized inhomogeneous hole gas: Monte Carlo simulation

    Full text link
    The magnetic order resulting from an indirect exchange between magnetic moments provided by spin-polarized hole gas in the metallic phase of a GaMnAs double layer structure is studied via Monte Carlo simulation. The coupling mechanism involves a perturbative calculation in second order of the interaction between the magnetic moments and carriers (holes). We take into account a possible polarization of the hole gas due to the existence of an average magnetization in the magnetic layers, establishing, in this way, a self-consistency between the magnetic order and the electronic structure. That interaction leads to an internal ferromagnetic order inside each layer, and a parallel arrangement between their magnetizations, even in the case of thin layers. This fact is analyzed in terms of the inter- and intra-layer interactions.Comment: 17 pages and 14 figure

    A Biased Review of Sociophysics

    Full text link
    Various aspects of recent sociophysics research are shortly reviewed: Schelling model as an example for lack of interdisciplinary cooperation, opinion dynamics, combat, and citation statistics as an example for strong interdisciplinarity.Comment: 16 pages for J. Stat. Phys. including 2 figures and numerous reference

    The southern photometric local universe survey (S-PLUS): Improved SEDs, morphologies, and redshifts with 12 optical filters

    Get PDF
    The Southern Photometric Local Universe Survey (S-PLUS) is imaging ~9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8mrobotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 μm pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel-1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| > 30° , 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, Hd, G band, Mg b triplet, Hα, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (δz/(1 + z) = 0.02 or better) for galaxies with r < 19.7 AB mag and z < 0.4, thus producing a 3D map of the local Universe over a volume of more than 1 (Gpc/h)3. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ~336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.Fil: De Oliveira, C. Mendes. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Ribeiro, T.. Universidade Federal de Sergipe; Brasil. National Optical Astronomy Observatory; Estados UnidosFil: Schoenell, W.. Universidade Federal do Rio Grande do Sul; BrasilFil: Kanaan, A.. Universidade Federal de Santa Catarina; BrasilFil: Overzier, R.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; BrasilFil: Molino, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Sampedro, L.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Coelho, P.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Barbosa, C.E.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Cortesi, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Costa Duarte, M.V.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Herpich, F.R.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal de Santa Catarina; BrasilFil: Hernandez Jimenez, J.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Placco, V.M.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Xavier, H.S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Abramo, L.R.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Saito, R.K.. Universidade Federal de Santa Catarina; BrasilFil: Chies Santos, A.L.. Universidade Federal do Rio Grande do Sul; BrasilFil: Ederoclite, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Centro de Estudios de Física del Cosmo de Aragon; EspañaFil: De Oliveira, R. Lopes. Universidade Federal de Sergipe; Brasil. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; Brasil. University of Maryland; Estados UnidosFil: Goncalves, D.R.. Universidade Federal do Rio de Janeiro; BrasilFil: Akras, S.. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Almeida, L.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal do Rio Grande do Norte; BrasilFil: Almeida Fernandes, F.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Beers, T.C.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Bonatto, C.. Universidade Federal do Rio Grande do Sul; BrasilFil: Bonoli, S.. Centro de Estudios de Física del Cosmo de Aragon; EspañaFil: Cypriano, E.S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Vinicius Lima, E.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Smith Castelli, Analia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentin
    corecore