27,149 research outputs found

    Revisiting the confrontation of the energy conditions with supernovae data

    Full text link
    In the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) approach to model the Universe the violation of the so-called energy conditions is related to some important properties of the Universe as, for example, the current and the inflationary accelerating expansion phases. The energy conditions are also necessary in the formulation and proofs of Hawking-Penrose singularity theorems. In two recent articles we have derived bounds from energy conditions and made confrontations of these bounds with supernovae data. Here, we extend these results in following way: first, by using our most recent statistical procedure for calculating new q(z) estimates from the \emph{gold} and \emph{combined} type Ia supernovae samples; second, we use these estimates to obtain a new picture of the energy conditions fulfillment and violation for the recent past (z1z\leq 1 ) in the context of the standard cosmology.Comment: 5 pages. To appear in Int. J. Mod. Phys. D. Talk presented at the 3rd International Workshop on Astronomy and Relativistic Astrophysics. V2: typos correcte

    Critical Behavior of a Three-State Potts Model on a Voronoi Lattice

    Full text link
    We use the single-histogram technique to study the critical behavior of the three-state Potts model on a (random) Voronoi-Delaunay lattice with size ranging from 250 to 8000 sites. We consider the effect of an exponential decay of the interactions with the distance,J(r)=J0exp(ar)J(r)=J_0\exp(-ar), with a>0a>0, and observe that this system seems to have critical exponents γ\gamma and ν\nu which are different from the respective exponents of the three-state Potts model on a regular square lattice. However, the ratio γ/ν\gamma/\nu remains essentially the same. We find numerical evidences (although not conclusive, due to the small range of system size) that the specific heat on this random system behaves as a power-law for a=0a=0 and as a logarithmic divergence for a=0.5a=0.5 and a=1.0a=1.0Comment: 3 pages, 5 figure

    Energy conditions bounds and their confrontation with supernovae data

    Full text link
    The energy conditions play an important role in the understanding of several properties of the Universe, including the current accelerating expansion phase and the possible existence of the so-called phantom fields. We show that the integrated bounds provided by the energy conditions on cosmological observables such as the distance modulus μ(z)\mu(z) and the lookback time tL(z)t_L(z) are not sufficient (nor necessary) to ensure the local fulfillment of the energy conditions, making explicit the limitation of these bounds in the confrontation with observational data. We recast the energy conditions as bounds on the deceleration and normalized Hubble parameters, obtaining new bounds which are necessary and sufficient for the local fulfillment of the energy conditions. A statistical confrontation, with 1σ3σ1\sigma-3\sigma confidence levels, between our bounds and supernovae data from the gold and combined samples is made for the recent past. Our analyses indicate, with 3σ3\sigma confidence levels, the fulfillment of both the weak energy condition (WEC) and dominant energy condition (DEC) for z1z \leq 1 and z0.8z \lesssim 0.8, respectively. In addition, they suggest a possible recent violation of the null energy condition (NEC) with 3σ3\sigma, i.e. a very recent phase of super-acceleration. Our analyses also show the possibility of violation of the strong energy condition (\textbf{SEC}) with 3σ3\sigma in the recent past (z1z \leq 1), but interestingly the q(z)q(z)-best-fit curve crosses the SEC-fulfillment divider at z0.67z \simeq 0.67, which is a value very close to the beginning of the epoch of cosmic acceleration predicted by the standard concordance flat Λ\LambdaCDM scenario.Comment: 7 pages, 3 figures. V2: Version to appear in Phys.Rev.D, analyses extended to 1sigma, 2sigma and 3sigma confidence levels, references added, minors change

    Clustering, Angular Size and Dark Energy

    Full text link
    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter α(z)\alpha(z) and a power index γ\gamma, and, second, we provide a statistical analysis to angular size data for a large sample of milliarcsecond compact radio sources. As a general result, we have found that the α\alpha parameter is totally unconstrained by this sample of angular diameter data.Comment: 9 pages, 7 figures, accepted in Physical Review

    Motion of falling object

    Full text link
    A simple setup was assembled to study the motion of an object while it falls. The setup was used to determine the instantaneous velocity, terminal velocity and acceleration due to gravity. Also, since the whole project was done within $20 it can easily be popularized.Comment: 11 pages, 4 figur

    Black Hole Formation with an Interacting Vacuum Energy Density

    Get PDF
    We discuss the gravitational collapse of a spherically symmetric massive core of a star in which the fluid component is interacting with a growing vacuum energy density. The influence of the variable vacuum in the collapsing core is quantified by a phenomenological \beta-parameter as predicted by dimensional arguments and the renormalization group approach. For all reasonable values of this free parameter, we find that the vacuum energy density increases the collapsing time but it cannot prevent the formation of a singular point. However, the nature of the singularity depends on the values of \beta. In the radiation case, a trapped surface is formed for \beta<1/2 whereas for \beta>1/2, a naked singularity is developed. In general, the critical value is \beta=1-2/3(1+\omega), where the \omega-parameter describes the equation of state of the fluid component.Comment: 9 pages, 8 figure

    An accurate formula for the period of a simple pendulum oscillating beyond the small-angle regime

    Full text link
    A simple approximation formula is derived here for the dependence of the period of a simple pendulum on amplitude that only requires a pocket calculator and furnishes an error of less than 0.25% with respect to the exact period. It is shown that this formula describes the increase of the pendulum period with amplitude better than other simple formulas found in literature. A good agreement with experimental data for a low air-resistance pendulum is also verified and it suggests, together with the current availability/precision of timers and detectors, that the proposed formula is useful for extending the pendulum experiment beyond the usual small-angle oscillations.Comment: 15 pages and 4 figures. to appear in American Journal of Physic

    Thermodynamics of Decaying Vacuum Cosmologies

    Get PDF
    The thermodynamic behavior of vacuum decaying cosmologies is investigated within a manifestly covariant formulation. Such a process corresponds to a continuous irreversible energy flow from the vacuum component to the created matter constituents. It is shown that if the specific entropy per particle remains constant during the process, the equilibrium relations are preserved. In particular, if the vacuum decays into photons, the energy density ρ\rho and average number density of photons nn scale with the temperature as ρT4\rho \sim T^{4} and nT3n \sim T^{3}. The temperature law is determined and a generalized Planckian type form of the spectrum, which is preserved in the course of the evolution, is also proposed. Some consequences of these results for decaying vacuum FRW type cosmologies as well as for models with ``adiabatic'' photon creation are discussed.Comment: 21 pages, uses LATE

    New Cosmic Accelerating Scenario without Dark Energy

    Get PDF
    We propose an alternative, nonsingular, cosmic scenario based on gravitationally induced particle production. The model is an attempt to evade the coincidence and cosmological constant problems of the standard model (Λ\LambdaCDM) and also to connect the early and late time accelerating stages of the Universe. Our space-time emerges from a pure initial de Sitter stage thereby providing a natural solution to the horizon problem. Subsequently, due to an instability provoked by the production of massless particles, the Universe evolves smoothly to the standard radiation dominated era thereby ending the production of radiation as required by the conformal invariance. Next, the radiation becomes sub-dominant with the Universe entering in the cold dark matter dominated era. Finally, the negative pressure associated with the creation of cold dark matter (CCDM model) particles accelerates the expansion and drives the Universe to a final de Sitter stage. The late time cosmic expansion history of the CCDM model is exactly like in the standard Λ\LambdaCDM model, however, there is no dark energy. This complete scenario is fully determined by two extreme energy densities, or equivalently, the associated de Sitter Hubble scales connected by ρI/ρf=(HI/Hf)210122\rho_I/\rho_f=(H_I/H_f)^{2} \sim 10^{122}, a result that has no correlation with the cosmological constant problem. We also study the linear growth of matter perturbations at the final accelerating stage. It is found that the CCDM growth index can be written as a function of the Λ\Lambda growth index, γΛ6/11\gamma_{\Lambda} \simeq 6/11. In this framework, we also compare the observed growth rate of clustering with that predicted by the current CCDM model. Performing a χ2\chi^{2} statistical test we show that the CCDM model provides growth rates that match sufficiently well with the observed growth rate of structure.Comment: 12 pages, 3 figures, accepted for publication by Phys. Rev. D. (final version, some references have corrected). arXiv admin note: substantial text overlap with arXiv:1106.193
    corecore