39,324 research outputs found
Influence of Small-Scale Inhomogeneities on the Cosmological Consistency Tests
The current cosmological dark sector (dark matter plus dark energy) is
challenging our comprehension about the physical processes taking place in the
Universe. Recently, some authors tried to falsify the basic underlying
assumptions of such dark matter-dark energy paradigm. In this Letter, we show
that oversimplifications of the measurement process may produce false positives
to any consistency test based on the globally homogeneous and isotropic LCDM
model and its expansion history based on distance measurements. In particular,
when local inhomogeneity effects due to clumped matter or voids are taken into
account, an apparent violation of the basic assumptions ("Copernican
Principle") seems to be present. Conversely, the amplitude of the deviations
also probes the degree of reliability underlying the phenomenological
Dyer-Roeder procedure by confronting its predictions with the accuracy of the
weak lensing approach. Finally, a new method is devised to reconstruct the
effects of the inhomogeneities in a LCDM model, and some suggestions of how to
distinguish between clumpiness (or void) effects from different cosmologies are
discussed.Comment: 18 pages, 2 figures. Improved version accepted for publication as a
Letter in MNRA
On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer
A self-consistent calculation of the density of states and the spectral
density function is performed in a two-dimensional spin-polarized hole system
based on a multiple-scattering approximation. Using parameters corresponding to
GaMnAs thin layers, a wide range of Mn concentrations and hole densities have
been explored to understand the nature, localized or extended, of the
spin-polarized holes at the Fermi level for several values of the average
magnetization of the Mn ystem. We show that, for a certain interval of Mn and
hole densities, an increase on the magnetic order of the Mn ions come together
with a change of the nature of the states at the Fermi level. This fact
provides a delocalization of spin-polarized extended states anti-aligned to the
average Mn magnetization, and a higher spin-polarization of the hole gas. These
results are consistent with the occurrence of ferromagnetism with relatively
high transition temperatures observed in some thin film samples and
multilayered structures of this material.Comment: 3 page
Studying light propagation in a locally homogeneous universe through an extended Dyer-Roeder approach
Light is affected by local inhomogeneities in its propagation, which may
alter distances and so cosmological parameter estimation. In the era of
precision cosmology, the presence of inhomogeneities may induce systematic
errors if not properly accounted. In this vein, a new interpretation of the
conventional Dyer-Roeder (DR) approach by allowing light received from distant
sources to travel in regions denser than average is proposed. It is argued that
the existence of a distribution of small and moderate cosmic voids (or "black
regions") implies that its matter content was redistributed to the homogeneous
and clustered matter components with the former becoming denser than the cosmic
average in the absence of voids. Phenomenologically, this means that the DR
smoothness parameter (denoted here by ) can be greater than unity,
and, therefore, all previous analyses constraining it should be rediscussed
with a free upper limit. Accordingly, by performing a statistical analysis
involving 557 type Ia supernovae (SNe Ia) from Union2 compilation data in a
flat CDM model we obtain for the extended parameter,
(). The effects of are also
analyzed for generic CDM models and flat XCDM cosmologies. For both
models, we find that a value of greater than unity is able to
harmonize SNe Ia and cosmic microwave background observations thereby
alleviating the well-known tension between low and high redshift data. Finally,
a simple toy model based on the existence of cosmic voids is proposed in order
to justify why can be greater than unity as required by supernovae
data.Comment: 5 pages, 2 figures. Title modified, results unchanged. It matches
version published as a Brief Report in Phys. Rev.
Derived Subgroups of Fixed Points in Profinite Groups
The main result of this paper is the following theorem. Let q be a prime, A
an elementary abelian group of order q^3. Suppose that A acts as a coprime
group of automorphisms on a profinite group G in such a manner that C_G(a)' is
periodic for each nontrivial element a in A. Then G' is locally finite.Comment: To appear in Glasgow Mathematical Journal (2011). 11 page
Magnetic ordering in GaAlAs:Mn double well structure
The magnetic order in the diluted magnetic semiconductor barrier of double
AlAs/GaAs: Mn quantum well structures is investigated by Monte Carlo
simulations. A confinement adapted RKKY mechanism is implemented for indirect
exchange between Mn ions mediated by holes. It is shown that, depending on the
barrier width and the hole concentration a ferromagnetic or a spin-glass order
can be established.Comment: 3 figure
Hamilton-Jacobi Approach for Power-Law Potentials
The classical and relativistic Hamilton-Jacobi approach is applied to the
one-dimensional homogeneous potential, , where and
are continuously varying parameters. In the non-relativistic case, the
exact analytical solution is determined in terms of , and the total
energy . It is also shown that the non-linear equation of motion can be
linearized by constructing a hypergeometric differential equation for the
inverse problem . A variable transformation reducing the general problem
to that one of a particle subjected to a linear force is also established. For
any value of , it leads to a simple harmonic oscillator if , an
"anti-oscillator" if , or a free particle if E=0. However, such a
reduction is not possible in the relativistic case. For a bounded relativistic
motion, the first order correction to the period is determined for any value of
. For , it is found that the correction is just twice that one
deduced for the simple harmonic oscillator (), and does not depend on the
specific value of .Comment: 12 pages, Late
Solid State Analog for He-McKellar-Wilkens Quantum Phase
In this letter we investigate the quantum dynamics of a quasiparticle in the
presence of a charged screw dislocation submitted to a uniform magnetic field.
Analysing the quantum scattering for this quasiparticle we observed the
appearance of a topological quantum phase in the solution and demonstrate that
this phenomenon is the solid state analog of the He-McKeller-Wilkens effect.Comment: 7 pages, epl styl
- …