137 research outputs found

    Acetyltransferases and tumour suppression

    Get PDF
    The acetyltransferase p300 was first identified associated with the adenoviral transforming protein E1A, suggesting a potential role for p300 in the regulation of cell proliferation. Direct evidence demonstrating a role for p300 in human tumours was lacking until the recentl publication by Gayther et al, which strongly supports a role for p300 as a tumour suppressor. The authors identify truncating mutations associated with the loss or mutation of the second allele in both tumour samples and cell lines, suggesting that loss of p300 may play a role in the development of a subset of human cancers

    Outcome analysis following removal of locking plate fixation of the proximal humerus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Concerning surgical management experience with locking plates for proximal humeral fractures has been described with promising results. Though, distinct hardware related complaints after fracture union are reported. Information concerning the outcome after removal of hardware from the proximal humerus is lacking and most studies on hardware removal are focused on the lower extremity. Therefore the aim of this study was to analyze the functional short-term outcome following removal of locking plate fixation of the proximal humerus.</p> <p>Methods</p> <p>Patients undergoing removal of a locking plate of the proximal humerus were prospectively followed. Patients were subdivided into the following groups: Group HI: symptoms of hardware related subacromial impingement, Group RD: persisting rotation deficit, Group RQ: patients with request for a hardware removal. The clinical (Constant-Murley score) and radiologic (AP and axial view) follow-up took place three and six months after the operation. To evaluate subjective results, the Medical Outcomes Study Short Form-36 (SF-36), was completed.</p> <p>Results</p> <p>59 patients were included. The mean length of time with the hardware in place was 15.2 ± 3.81 months. The mean of the adjusted overall Constant score before hardware removal was 66.2 ± 25.2% and increased significantly to 73.1 ± 22.5% after 3 months; and to 84.3 ± 20.6% after 6 months (p < 0.001). The mean of preoperative pain on the VAS-scale before hardware removal was 5.2 ± 2.9, after 6 months pain in all groups decreased significantly (p < 0.001). The SF-36 physical component score revealed a significant overall improvement in both genders (p < 0.001) at six months.</p> <p>Conclusion</p> <p>A significant improvement of clinical outcome following removal was found. However, a general recommendation for hardware removal is not justified, as the risk of an anew surgical and anesthetic procedure with all possible complications has to be carefully taken into account. However, for patients with distinct symptoms it might be justified.</p

    Pinealectomy affects bone mineral density and structure - an experimental study in sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis and associated fractures are a major public health burden and there is great need for a large animal model. Melatonin, the hormone of the pineal gland, has been shown to influence bone metabolism. This study aims to evaluate whether absence of melatonin due to pinealectomy affects the bone mass, structure and remodeling in an ovine animal model.</p> <p>Methods</p> <p>Female sheep were arranged into four groups: Control, surgically ovariectomized (Ovx), surgically pinealectomized (Px) and Ovx+Px. Before and 6 months after surgery, iliac crest biopsies were harvested and structural parameters were measured using μCT. Markers of bone formation and resorption were determined. To evaluate long term changes after pinealectomy, bone mineral density (BMD) was analyzed at the distal radius at 0, 3, 9, 18 and 30 months.</p> <p>Results</p> <p>Cancellous bone volume (BV/TV) declined after 6 months by -13.3% Px and -21.5% OvxPx. The bone loss was due to increased trabecular separation as well as decreased thickness. The histomorphometric quantification and determination of collagen degradation products showed increased bone resorption following pinealectomy. Ovariectomy alone results in a transient bone loss at the distal radius followed by continuous increase to baseline levels. The bone resorption activity after pinealectomy causes a bone loss which was not transient, since a continuous decrease in BMD was observed until 30 months.</p> <p>Conclusions</p> <p>The changes after pinealectomy in sheep are indicative of bone loss. Overall, these findings suggest that the pineal gland may influence bone metabolism and that pinealectomy can be used to induce bone loss in sheep.</p

    Sulfate Activation in Mitosomes Plays an Important Role in the Proliferation of Entamoeba histolytica

    Get PDF
    Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not “rudimentary” or “residual” mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica

    Bone turnover markers in sheep and goat: a review of the scientific literature

    Get PDF
    Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.José Arthur de A. Camassa acknowledges to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for his PhD scholarship 202248/2015-1.info:eu-repo/semantics/publishedVersio

    Integrating ecology and evolutionary theory. A game changer for biodiversity conservation?

    Get PDF
    Currently, one of the central arguments in favour of biodiversity conservation is that it is essential for the maintenance of ecosystem services, that is, the benefits that people receive from ecosystems. However, the relationship between ecosystem services and biodiversity is contested and needs clarification. The goal of this chapter is to spell out the interaction and reciprocal influences between conservation science, evolutionary biology, and ecology, in order to understand whether a stronger integration of evolutionary and ecological studies might help clarify the interaction between biodiversity and ecosystem functioning as well as influence biodiversity conservation practices. To this end, the eco-evolutionary feedback theory proposed by David Post and Eric Palkovacs is analysed, arguing that it helps operationalise niche construction theory and develop a more sophisticated understanding of the relationship between ecosystem functioning and biodiversity. Finally, it is proposed that by deepening the integration of ecological and evolutionary factors in our understanding of ecosystem functioning, the eco-evolutionary feedback theory is supportive of an “evolutionary-enlightened management” of biodiversity within the ecosystem services approach.info:eu-repo/semantics/publishedVersio

    Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: Cellular model of pathology

    Get PDF
    The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials

    Reduction of Mitoferrin Results in Abnormal Development and Extended Lifespan in Caenorhabditis elegans

    Get PDF
    Iron is essential for organisms. It is mainly utilized in mitochondria for biosynthesis of iron-sulfur clusters, hemes and other cofactors. Mitoferrin 1 and mitoferrin 2, two homologues proteins belonging to the mitochondrial solute carrier family, are required for iron delivery into mitochondria. Mitoferrin 1 is highly expressed in developing erythrocytes which consume a large amount of iron during hemoglobinization. Mitoferrin 2 is ubiquitously expressed, whose functions are less known. Zebrafish with mitoferrin 1 mutation show profound hypochromic anaemia and erythroid maturation arrests, and yeast with defects in MRS3/4, the counterparts of mitoferrin 1/2, has low mitochondrial iron levels and grows poorly by iron depletion. Mitoferrin 1 expression is up-regulated in yeast and mouse models of Fiedreich's ataxia disease and in human cell culture models of Parkinson disease, suggesting its involvement in the pathogenesis of diseases with mitochondrial iron accumulation. In this study we found that reduced mitoferrin levels in C. elegans by RNAi treatment causes pleiotropic phenotypes such as small body size, reduced fecundity, slow movement and increased sensitivity to paraquat. Despite these abnormities, lifespan was increased by 50% to 80% in N2 wild type strain, and in further studies using the RNAi sensitive strain eri-1, more than doubled lifespan was observed. The pathways or mechanisms responsible for the lifespan extension and other phenotypes of mitoferrin RNAi worms are worth further study, which may contribute to our understanding of aging mechanisms and the pathogenesis of iron disorder related diseases
    corecore