45 research outputs found
Recommended from our members
Engineered living hydrogels for robust biocatalysis in pure organic solvents
Engineered living hydrogels that can protect cells from harsh environments have achieved preliminary successes in biomedicine and environmental remediation. However, their biocatalytic applications in pure organic solvents have not been explored. Here, living hydrogels were engineered by integrating genetically modified Escherichia coli cells into alginate hydrogels for robust biocatalysis in pure organic solvents. The biocompatible hydrogels could not only support cell growth and diminish cell escape but could also act as protective matrices to improve organic solvent tolerance, thereby prolonging catalytic activity of whole-cell biocatalysts. Moreover, the influence of hydrogel microenvironments on biocatalytic efficiency was thoroughly investigated. Importantly, the versatility of engineered living hydrogels paves the way to achieve robust biocatalytic efficiency in a variety of pure organic co-solvents. Overall, we are able to engineer living hydrogels for regio-selective synthesis in pure organic solvents, which may be particularly useful for the innovation of living hydrogels in biocatalysis
Do situations influence the environmentally responsible behaviors of national park visitors? Survey from Shennongjia National Park, Hubei Province, China
Natural ecological protection in protected areas involves the restriction of land use patterns and their intensity. Typically, the goal of land use is to balance environmental protection with community development. Nature education and ecological experiences in protected areas encourage visitor environmentally responsible behavior (ERB) which supports the sustainable use of land in national parks and reduces the degradation of natural environments. The existing research literature has a focus on ways of facilitating ERB through rational and external influences. However, individual behaviors are contextual and specific situations affect behavior. This research used environmental knowledge as a rational factor and situations were viewed as a moderator in stimulating ERB based on situational cognition theory. A knowledge-situation-behavior latent variable moderator model was constructed and tested with visitor survey data from Shennongjia National Park, Hubei Province, China. The findings showed that situations had a significant positive moderating effect on the relationship between environmental knowledge and ERB. Books, articles, authors and familiar people had a significant positive moderating effect on ERB, as did environmental interpretation and staff guidance. Precise measures to promote the ERB of national park visitors were proposed
Immunization against inhibin DNA vaccine as an alternative therapeutic for improving follicle development and reproductive performance in beef cattle
The objective of the present study was to investigate the potential role of immunization against INH on follicular development, serum reproductive hormone (FSH, E2, and P4) concentrations, and reproductive performance in beef cattle. A total of 196 non-lactating female beef cattle (4-5 years old) with identical calving records (3 records) were immunized with 0.5, 1.0, 1.5, or 2.0 mg [(T1, n = 58), (T2, n = 46), (T3, n = 42) and (T4, n = 36), respectively] of the pcISI plasmid. The control (C) group (n = 14) was immunized with 1.0 mL 0.9% saline. At 21d after primary immunization, all beef cattle were boosted with half of the primary immunization dose. On day 10 after primary immunization, the beef cattle immunized with INH DNA vaccine evidently induced anti-INH antibody except for the T1 group. The T3 group had the greatest P/N value peak among all the groups. The anti-INH antibody positive rates in T2, T3 and T4 groups were significantly higher than that in C and T1 groups. RIA results indicated that serum FSH concentration in T2 group increased markedly on day 45 after booster immunization; the E2 amount in T3 group was significantly increased on day 10 after primary immunization, and the levels of E2 also improved in T2 and T3 groups after booster immunization; the P4 concentration in T2 group was significantly improved on day 21 after primary immunization. Ultrasonography results revealed that the follicles with different diameter sizes were increased, meanwhile, the diameter and growth speed of ovulatory follicle were significantly increased. Furthermore, the rates of estrous, ovulation, conception, and twinning rate were also significantly enhanced. These findings clearly illustrated that INH DNA vaccine was capable of promoting the follicle development, thereby improving the behavioral of estrous and ovulation, eventually leading to an augment in the conception rates and twinning rate of beef cattle
First outcomes from the PHEBUS FPT1 uncertainty application done in the EU MUSA project
The Management and Uncertainties of Severe Accidents (MUSA) project, founded in HORIZON 2020 and coordinated by CIEMAT (Spain), aims to consolidate a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) by focusing on Source Term (ST) Figure of Merits (FOM). In this framework, among the 7 MUSA WPs the Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), looked at applying and testing UQ methodologies, against the internationally recognized PHEBUS FPT1 test. Considering that FPT1 is a simplified but representative SA scenario, the main target of the WP4 is to train project partners to perform UQ for SA analyses. WP4 is also a collaborative platform for highlighting and discussing results and issues arising from the application of UQ methodologies, already used for design basis accidents, and in MUSA for SA analyses. As a consequence, WP4 application creates the technical background useful for the full plant and spent fuel pool applications planned along the MUSA project, and it also gives a first contribution for MUSA best practices and lessons learned. 16 partners from different world regions are involved in the WP4 activities. The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise, the methodologies used by the partners to perform the UQ exercise, and the first insights coming out from the calculation phase
Role of tumor cell pyroptosis in anti-tumor immunotherapy
Peripheral tumor-specific CD8+ T cells often fail to infiltrate into tumor parenchyma due to the immunosuppression of tumor microenvironment (TME). Meanwhile, a significant portion of tumor-specific CD8+ T cells infiltrated into TME are functionally exhausted. Despite the enormous success of anti-PD-1/PD-L1 immune-checkpoint blockade (ICB) treatment in a wide variety of cancer types, the majority of patients do not respond to this treatment largely due to the failure to efficiently drive tumor-specific CD8+ T cell infiltration and reverse their exhaustion states. Nowadays, tumor cell pyroptosis, a unique cell death executed by pore-forming gasdermin (GSDM) family proteins dependent or independent on inflammatory caspase activation, has been shown to robustly promote immune-killing of tumor cells by enhancing tumor immunogenicity and altering the inflammatory state in the TME, which would be beneficial in overcoming the shortages of anti-PD-1/PD-L1 ICB therapy. Therefore, in this review we summarize the current progresses of tumor cell pyroptosis in enhancing immune function and modulating TME, which synergizes anti-PD-1/PD-L1 ICB treatment to achieve better anti-tumor effect. We also enumerate several strategies to better amply the efficiency of anti-PD-1/PD-L1 ICB therapy by inducing tumor cell pyroptosis
A novel diffusion bonding of 6063Al based on a mode of diffusion-migrating and suspension-broken of surface oxide film
The breaking of surface oxide film in a technology area of ultrasonic-assisted diffusion joining manufacturing of large-size structure components is a challenge. In this work, a novel method of breaking surface oxide film of Al alloys based on first diffusion-migrating and then suspension-broken was investigated. Diffusion bonding of 6063Al alloys was performed by Zn interlayer at temperature below 400 °C. The oxide film migrated away from the Al alloy base metal by solid phase diffusion at 360 °C, and remained in the joint as a nanoscale oxide film. When temperature increased to 390 °C, the oxide film suspended in the Zn–Al eutectic liquid phase were rapidly broken up into small fragments through an instantaneous ultrasonic action (only 0.3 s). The change of acoustic pressure in the liquid metal proved that the suspended continuous oxide film was broken by the micro-jet acted simultaneously on both sides of oxide film induced by the ultrasonic cavitation effect. Finally, the inter-diffusion between Zn and Al at 360 °C was promoted by a longer holding time to obtain the homogeneous joint composed by Zn–Al eutectoid phase containing oxide fragments, and had a higher strength than the base metal. The breaking of oxide film and joint homogenization were performed under pressure-less condition, which effectively avoided the squeezed-out of the liquid phase. This technology shows a great potential for manufacturing large-size joint of industrial products
On the effect of zeolite acid property and reaction pathway in Pd–catalyzed hydrogenation of furfural to cyclopentanone
Aqueous phase hydrogenative rearrangement of furfural (FAL) to cyclopentanone (CPO) via furfuryl alcohol (FOL) has been studied over Pd catalysts supported on H–ZSM–5 zeolites. Pd states, zeolite properties and reaction condition parameters were optimized, affording 98% selectivity and 120 h−1 specific reaction rate over 2% Pd/H–ZSM–5(25) catalyst at 160 °C and 3 MPa H2. For hydrogenation of FAL–to–FOL, the activity was related to the Si/Al ratio and acid property of zeolite supports. For hydrogenative rearrangement of FOL–to–CPO, pure H–ZSM–5 zeolite could catalyze single–step conversion with relatively low reaction rate, whereas the presence of Pd sites could achieve multi–step transformation with remarkably increased rate, highlighting Pd–zeolite acid sites synergy. Proton and furanylmethoxy–relevant intermediates were captured with spin trapping electron paramagnetic resonance experiments, and 4–hydroxy–2–cyclopentenone and 2–cyclopentenone were also identified as key intermediates in tandem reaction pathway to produce CPO.We thank National Natural Science Foundation of China (21802070 and 22178161) and National Key R&D Program of China (2018YFE0122600) for financial support
Preparation of a novel monoclonal antibody against Avian leukosis virus subgroup J Gp85 protein and identification of its epitope
ABSTRACT: Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that has caused huge economic losses in the poultry industry due to its great pathogenicity and transmission ability. However, the continuous emergence of new strains would bring challenges to diagnosis and control of ALV-J. .This study focuses on preparing the monoclonal antibody (MAb) against ALV-J Gp85 and identifying its epitope. The truncated ALV-J gp85 gene fragment was amplified and then cloned into expression vectors. Purified GST-Gp85 was used to immune mice and His-Gp85 was used to screen MAb. Finally, a hybridoma cell line named J16 that produced specific MAb against the ALV-J. Immunofluorescence assay showed that MAb J16 specifically recognized ALV-J rather than ALV-A or ALV-K infected DF-1 cells. To identify the epitope recognized by MAb J16, fourteen partially overlapping ALV-J Gp85 fragments were prepared and tested by Western blot. The results indicated that peptide 150-LIRPYVNQ-157 was the minimal epitope of ALV-J Gp85 recognized by MAb J16. Alignment analysis of Gp85 from different ALV subgroups showed that the epitope keep high conservation among 36 ALV-J strains, but significant different from that of ALV subgroup A, B, C, D, E and K. Overall, we prepared a MAb specific against ALV-J and identified peptide 150-LIRPYVNQ-157 as a novel specific epitope of ALV-J Gp85, which may assist in laying the foundation for specific ALV-J detection methods