980 research outputs found

    Semiclassical spin liquid state of easy axis Kagome antiferromagnets

    Full text link
    Motivated by recent experiments on Nd-langasite, we consider the effect of strong easy axis single-ion anisotropy DD on S>3/2S > 3/2 spins interacting with antiferromagnetic exchange JJ on the Kagome lattice. When Tâ‰ȘDS2T \ll DS^2, the collinear low energy states selected by the anisotropy map on to configurations of the classical Kagome lattice Ising antiferromagnet. However, the low temperature limit is quite different from the cooperative Ising paramagnet that obtains classically for Tâ‰ȘJS2T \ll JS^2. We find that sub-leading O(J3S/D2){\mathcal O}(J^3S/D^2) multi-spin interactions arising from the transverse quantum dynamics result in a crossover from an intermediate temperature classical cooperative Ising paramagnet to a semiclassical spin liquid with distinct short-ranged correlations for Tâ‰ȘJ3S/D2T \ll J^3S/D^2.Comment: 4 pages, 3 eps figure

    Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene

    Full text link
    Suspended graphene is difficult to image by scanning probe microscopy due to the inherent van-der-Waals and dielectric forces exerted by the tip which are not counteracted by a substrate. Here, we report scanning tunneling microscopy data of suspended monolayer graphene in constant-current mode revealing a surprising honeycomb structure with amplitude of 50−-200 pm and lattice constant of 10-40 nm. The apparent lattice constant is reduced by increasing the tunneling current II, but does not depend systematically on tunneling voltage VV or scan speed vscanv_{\rm scan}. The honeycomb lattice of the rippling is aligned with the atomic structure observed on supported areas, while no atomic corrugation is found on suspended areas down to the resolution of about 3−43-4 pm. We rule out that the honeycomb structure is induced by the feedback loop using a changing vscanv_{\rm scan}, that it is a simple enlargement effect of the atomic resolution as well as models predicting frozen phonons or standing phonon waves induced by the tunneling current. Albeit we currently do not have a convincing explanation for the observed effect, we expect that our intriguing results will inspire further research related to suspended graphene.Comment: 10 pages, 7 figures, modified, more detailed discussion on errors in vdW parameter

    Antiferromagnetic Quantum Spins on the Pyrochlore Lattice

    Full text link
    The ground state of the S=1/2 Heisenberg antiferromagnet on the pyrochlore lattice is theoretically investigated. Starting from the limit of isolated tetrahedra, I include interactions between the tetrahedra and obtain an effective model for the spin-singlet ground state multiplet by third-order perturbation. I determine its ground state using the mean-field approximation and found a dimerized state with a four-sublattice structure, which agrees with the proposal by Harris et al. I also discuss chirality correlations and spin correlations for this state.Comment: 4 pages in 2-column format, 5 figures; To appear in J. Phys. Soc. Jpn. (Mar, 2001

    Quantum Monte Carlo scheme for frustrated Heisenberg antiferromagnets

    Full text link
    When one tries to simulate quantum spin systems by the Monte Carlo method, often the 'minus-sign problem' is encountered. In such a case, an application of probabilistic methods is not possible. In this paper the method has been proposed how to avoid the minus sign problem for certain class of frustrated Heisenberg models. The systems where this method is applicable are, for instance, the pyrochlore lattice and the J1−J2J_1-J_2 Heisenberg model. The method works in singlet sector. It relies on expression of wave functions in dimer (pseudo)basis and writing down the Hamiltonian as a sum over plaquettes. In such a formulation, matrix elements of the exponent of Hamiltonian are positive.Comment: 19 LaTeX pages, 6 figures, 1 tabl

    Electrical transport and low-temperature scanning tunneling microscopy of microsoldered graphene

    Full text link
    Using the recently developed technique of microsoldering, we perform a systematic transport study of the influence of PMMA on graphene flakes revealing a doping effect of up to 3.8x10^12 1/cm^2, but a negligible influence on mobility and gate voltage induced hysteresis. Moreover, we show that the microsoldered graphene is free of contamination and exhibits a very similar intrinsic rippling as has been found for lithographically contacted flakes. Finally, we demonstrate a current induced closing of the previously found phonon gap appearing in scanning tunneling spectroscopy experiments, strongly non-linear features at higher bias probably caused by vibrations of the flake and a B-field induced double peak attributed to the 0.Landau level of graphene.Comment: 8 pages, 3 figure
    • 

    corecore