39 research outputs found

    Quantized ID-CNN for a Low-power PDM-to-PCM Conversion in TinyML KWS Applications

    Get PDF
    This paper proposes a novel low-power HW accelerator for audio PDM-to-PCM conversion based on artificial neural network. The system processes samples from a digital MEMS microphone and converts them in PCM format by using a 1-Dimensional Convolutional Neural Network (1D-CNN). The model has been quantized to reduce the computational complexity while preserving its Signal-to-Noise Ratio (SNR) and the HW accelerator has been designed to minimize the physical resources. The SNR achieved is 41.56 dB while the prototyping of the design on a Xilinx Artix-7 FPGA shows a dynamic power consumption of 1 mW and a utilization of 606 LUTs and 410 FFs. These results enable the proposed system to be the first step of a tiny low-power end-to-end neural network-based Keyword Spotting (KWS) system

    Feedback control of the fluorescence light squeezing

    Full text link
    We consider a two-level atom stimulated by a coherent monochromatic laser and we study how to enhance the squeezing of the fluorescence light and of the atom itself in the presence of a Wiseman-Milburn feedback mechanism, based on the homodyne detection of a fraction of the emitted light. Besides analyzing the effect of the control parameters on the squeezing properties of the light and of the atom, we also discuss the relations among these. The problem is tackled inside the framework of quantum trajectory theory.Comment: RevTeX4, 4 pages, 2 figure

    Modification of amorphous and microcrystalline silicon film properties after irradiation with MeV and GeV protons

    Get PDF
    It is well known that the degree of crystallinity has a prominent influence on the stability of Silicon under proton irradiation. Amorphous silicon films are much more stable than mono- or polycrystalline silicon substrates or microcrystalline silicon thin films. In particular it has been shown, that in a micromorph tandem solar cell irradiated with protons in the lower MeV energy range only the microcrystalline diode showed a pronounced decrease in photocurrent after irradiation1. The proton irradiation induced damage in thick crystalline silicon samples has a maximum at beam energies between 1MeV and 4MeV and decreases for further increasing proton energies. However, irradiating an amorphous silicon/crystalline silicon heterojunction solar cell with a relatively dose of 24GeV, we observed a very strong drop in conversion efficiency with only minor recovery after sample annealing. In literature it has been reported 2, that the degradation of amorphous silicon is negligible for proton energies above 100MeV. In order to clarify to which extent also the thin film top layer of the hetero solar cell is affected by the proton irradiation, we exposed a variety of thin film silicon samples either to a 1.7MeV beam with a dose of 5.1012 protons/cm2 or to a 24GeV beam with a dose of 5 .1013 protons/cm2. The investigated intrinsic, p-type and n-type amorphous and microcrystalline silicon films have been deposited by conventional plasma deposition under variation of the silane / hydrogen gas phase ratio. Raman measurements have been done in order to determine the order of crystallinity obtained under various deposition conditions. We observed even at 24GeV a clear modification in the electrical characteristics of the films. Temperature dependent measurements of the dark current revealed in particular for all doped samples a significant increase of the activation energy, that might be explained by a decrease of the dopant efficiency, while for intrinsic a-Si:H layers the increasing activation energy is due to deep defect creation

    Transcription activation by targeted recruitment of the RNA polymerase II CTD phosphatase FCP1

    No full text

    Inhibition of Tat-transactivation by the RNA polymerase II CTD-phosphatase FCP1

    No full text

    Transcriptional activity of P-TEFb kinase in vivo requires the C-terminal domain of RNA polymerase II.

    No full text
    Phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) is an important step in transcription and the positive transcription elongation factor b (P-TEFb) has been proposed to facilitate elongation at many genes. The P-TEFb contains a catalytic subunit (Cdk9) that, in association with a cyclin subunit (cyclinT1), has the ability to phosphorylate the CTD substrate in vitro. Here, we demonstrate that cyclinT1/Cdk9-mediated transcription requires CTD-containing RNAPII, suggesting that the CTD is the major target of the cyclinT1/Cdk9 complex in vivo. Unlike Cdk7 and Cdk8, two other cyclin-dependent kinases that are capable of phosphorylating the CTD in vitro, we found that only the Cdk9 activates gene expression in a catalysis-dependent manner. Finally, unlike cyclinT1 and T2, we found that the targeted recruitment to promoter DNA of cyclinK (a recently described alternative partner of Cdk9) does not stimulate transcription in vivo. Collectively, our data strongly indicate that the P-TEFb kinase subunits cyclinT/Cdk9 are specifically involved in transcription and the CTD domain of RNAPII is the major functional target of this complex in vivo
    corecore